Generative Layout Modeling using Constraint Graphs
Supplementary Material

Wamiq Para!
IKAUST 2Adobe Research

{wamiq.para, peter.wonka}@kaust.edu.sa

Abstract

In this document, we collect additional results and pro-
vide more details on several aspects of the method, including
furniture layout generation and the network architecture.
In Section 1, we describe furniture layout generation in
more detail and show additional furniture layout generation
results in Section 2. Then, we show experiments with gener-
ating both rooms and furniture of a floor plan in Section 3.
Additional results conditioned on the count or existence of
rooms are presented in Section 4. We give more details on
our data pre-processing in Section 5, show the interface of
our perceptual study in Section 6, and describe additional
details of our architecture in Section 7.

1. Furniture Layout Implementation Details

In this section, we describe the implementation details for
furniture layouts that differ from floor plans. Since furniture
layouts are less constrained than floor plans (furniture pieces
do not need to cover all of the layout without gaps, for
example), we do not add constraining edges and omit the
optimization step, directly using the element constraints as
elements instead: N = N©. We train one furniture layout
model that we condition on the room type, and optionally on
the room width, height and door locations.

Layout representation Each element represents a piece
of furniture with an oriented bounding box N =
(1,2, y,w, h,), with furniture type 7, bounding box po-
sition (x, y), width and height (w, k), and orientation .

Element constraints The element constraint model de-
scribed in Section 3.2 of the main paper generates constraints
N¢ = (1,2,y,w,h,«a) for all parameters of a furniture
piece that are directly used as furniture pieces /N. The orien-
tation o has a different value range than the other parameters,
and we quantize it to 5 bits instead of the 6 bits we use for
the other parameters.

Paul Guerrero? Tom Kelly?
3 University of Leeds

Leonidas Guibas* Peter Wonka'
* Stanford University

guerrero@adobe.com twakelly@gmail.com guibas@cs.stanford.edu

Table 1. Free generation of furniture layouts. We compare the
layout statistics of our results to a simple procedural model and to
purely image-based generation with StyleGAN [3]. Our method
shows a clear improvement over both baselines.

method St Sy Sq Savg

StyleGAN 16.50 6.24 7.09 9.94
Procedural 15.65 5.21 4.90 8.59
ours free 1.00 1.00 1.00 1.00

2. Additional Furniture Layout Results

In this section, we present additional furniture layout re-
sults. We generated approximately 10k furniture layouts for
all room types in our floor plans. We evaluate these furni-
ture layouts using the layout statistics described in Section
4 of the main paper. To compute topological statistics S,
we create an r-NN graph of the furniture pieces as layout
graph, with » = 15% of the layout diagonal. Thus, topolog-
ical statistics capture relationships in local neighborhoods
of furniture pieces, for example which types of furniture are
typically placed next to each other.

Metrics Since elements in furniture layouts have addi-
tional parameters, we extend the list of layout statistics. We
add one statistic to the shape statistics S;.:

sy: ahistogram of orientation distributions for each element type.

And the alignment statistics .S, are extended with:

o

ss: ahistogram of the differences between orientations.
sy: ahistogram of the differences between widths.
sq: ahistogram of the differences between heights.

Baselines We compare the furniture layouts to two base-
lines: layouts generated with StyleGAN and layouts gener-
ated with a simple procedural model that is fitted to dataset
statistics. For StyleGAN we proceed similar as in the floor
plan setting: we render our furniture layout dataset, train

StyleGAN Ground-truth

Procedural

Ours

Figure 1. Furniture layout results for the ground truth, StyleGAN, the simple procedural model and our approach. Note that StyleGAN is not
conditioned on the room type in these experiments and thus freely generates different room types, according to its learned distribution.

Figure 2. Furniture generation conditioned on room shape and doors allows for the generation of furnished rooms. Room floors and furniture

are colored according to the their type.

StyleGAN, and parse the generated images back into furni-
ture layouts. With the procedural model we want to show
that a hand-crafted procedural model that can reproduce a
given dataset distribution is not trivial to design, even when
fitting the model to dataset statistics. The procedural model
draws the room size from the dataset distribution of room
sizes, and proceeds similarly for the number of doors, win-
dows and number of objects from each furniture category.
These distributions are independent and conditioned only on
room type. Furniture width and height is sampled from a
distribution conditioned on the furniture category. Doors,
windows, and furniture are positioned around the perimeter

of room at a random location, re-trying up to 10 times in the
event of a collision.

Table 1 and Figure 1 show the results of this comparison.
Similar to floor plans, our method shows a clear advantage
over the purely image-based StyleGAN and over the simple
procedural model.

3. Furnished Floor Plans

Similar to floor plans, we can condition furniture layouts
on constraints like the room shape, and the door position.
This allows us to place furniture layouts into rooms of pre-

——2 bedroomsH

e (N T | g 0

3 bedroomsll——— P(# of bedrooms)

1234+ 1234+ 1234+ 1234+
testset uncond. 2-cond. 3-cond.

———without balconyll

AL P 1 e

with balconyll—— P(balcony exists)

noyes noyes noyes noyes
testset uncond. n.-cond. y.cond.

Figure 3. Additional generated floor plans conditioned on room count or existence. We show four examples for each condition. Statistics
over room count/existence for these conditioned results compared to unconditioned results and the dataset are shown on the right. While our
method does not fully guarantee satisfying the condition, it does satisfy the condition with high probability.

viously generated floor plans, resulting in fully generated
furnished floor plans. Two furnished floor plans are shown
in Figure 2. Note that the furniture layouts correctly respect
the shape and door location of the room they were placed in.

4. Additional Floor Plans Conditioned on
Room Count or Existence

We show additional qualitative results of generated floor
plans that were condition on given room counts or room
existence in Figure 3. On the left and center we show four
additional floor plan samples for each condition that was
shown in Figure 7 of the main paper. On the right, we pro-
vide quantitative results that compare the probability distri-
bution of different room counts (top row), or room existence
(bottom row) for floor plans from the testset, unconditionally
generated floor plans, and floor plans generated with each of
the two corresponding conditions. Since the condition is not
a hard constraint, it is not guaranteed to be satisfied by our
method, but our approach is successfully trained to satisfy it
with high probability.

5. Data Preparation

Like other methods, we first re-scale and quantize all
floorplans to a uniform coordinate grid, 64x64 in our experi-
ments, corresponding to 6-bit quantization. To decompose
a floor plan into rectangular boxes, we first construct a grid
by extending all vertical and horizontal edges into infinite
lines. This grid gives us an over-segmentation of the floor
plan into boxes. To reduce the number of boxes, we perform
several rounds of merging adjacent boxes if they have the
same room type and if the merged result is still a rectangular
box. We perform one round of merging vertically adjacent
boxes, followed by three rounds of merging horizontally
adjacent boxes. After merging, we obtain our final boxes.
We can then create all constraint edges and descriptive edges
based on the adjacency and door connectivity of these boxes.

Which of the two generated (left/right) floorplans exhibits more realism?

This image "~ This image.

lQuestion 1 of 40

Figure 4. A screen shot of our perceptual study. Participants were
asked to compare the realism of the two floor plans shown on the
left and right.

6. Perceptual Study Screenshot

A screenshot of the perceptual study is shown in Figure 4.
We also provided a legend of room colors and icons and a
few examples of ground truth floor plans under the button
labeled ‘Show examples’.

7. Architecture Details

In this section, we describe the architecture of our gener-
ative models in more detail.

The model for element constraint generation consists of
12 Transformers blocks. Our sequence lengths depend on the
particular dataset used, and are listed further below. The edge
generation model is a Pointer Network with two-parts: 1.
An encoder which generates embeddings, and can attend to
all elements in the sequence of element constraints and 2. A
decoder which generates pointers, and can attend to elements
in an autoregressive fashion. In our experiments, we use an
encoder with 16 layers and a decoder with 12 layers. We use
384 dimensional embeddings in all our models.

Constrained generation is performed by a variant of the

Embedding

Emb?dding
Constraint Element
Sequence Sequence

-
Embedding Network

(" Pointer Network

312 Edge

Sequence

-

= Gather

-
/

]
=

7

3
1
—
2
—

Figure 5. The user-constrained Edge Generation Model. An embedding function modeled by a transformer (top left) generates element
embeddings that are re-arranged based on the edge sequence. This sequence is ingested by the edge model (bottom right), which is also
implemented as a transformer. The encoder (left block in the embedding network) is only used when performing constrained generation.

Encoder
Decoder

Embedding

Embedding
t
Constraint Element
Sequence Sequence

Figure 6. The constrained element generation model. Having an
unmasked encoder allows our network to attend to all elements
of the constraint sequence. The sequences have three parts - the
value sequence, the position sequence and the type sequence (see
Section 7.1).

unconstrained models. Concretely, we add a constraint en-
coder to both the element constraint model and the edge mod-
els resulting in an encoder-decoder architecture, see Figure 6
for an illustration. In the edge models, we concretely change
the encoder of the Pointer Network to an encoder-decoder
architecture, as illustrated in Figure 5. The constraint en-
coder is a stack of Transformer blocks allowed to attend all
elements of the constraint sequence. The decoder is another
stack of blocks allowed to attend to all tokens in the con-
straint sequence. We use 8 layers for constraint encoder in

the element model and 3 layers in the edge-model.

Both the element constraint model and the edge model
are composed of embedding blocks (yellow in Figures 6 and
5) and transformer blocks (gray). Next, we describe these
building blocks in more detail.

7.1. Embedding

Element Constraint Model The input sequence to the el-
ement constraint model has three components - the value se-

quence Sp = {v;}¥M~ the position sequence I = {i}*~

and the type sequence 7' = {imod k}*~ where My is
the number of elements and & is the number of properties
per element. We use three separate learned embeddings, one
for each sequence. The final embedding is the sum of these

three embeddings.

Edge Model The edge model operates on sequences of
learned element embeddings gg, , as described in Section 3.3
of the paper. The embedding function is modeled by a trans-
former with the same architecture as the element constraint
model, that takes as input the element constraint sequence
and outputs a sequence of element embeddings. Similar to
the element constraint model, the embedding function can
be conditioned on a sequence of constraints by adding an
encoder, as shown in the top left of Figure 5. The sequence
of element embeddings is then arranged according to the

edge sequence (concatenating the element embeddings cor-
responding to the two elements of each edge) and processed
by the edge model (Figure 5, right) as described in Section
3.3 of the paper.

Bedroom/Balcony Conditioning This is one of the the
examples of conditional generation shown in the main paper.
In both of these cases the constraint sequence is of length 3,
consisting of a start token, followed by a constraint token and
ending with a stop token. For controlling the balcony gener-
ation, the constraint token is either 1 or 0 and for controlling
the number of bedrooms, the condition token contains the
number of bedrooms. At training time, we obtain the values
for these tokens from the ground truth floor plan, at inference
time, the tokens can be set by the user.

7.2. Transformer GPT2 Blocks

We use Dropout [5] with a drop probability of 0.2 im-
mediately after performing the sum of embeddings. The
attention layers in all our experiments use Multiheaded At-
tention with 12 heads. We set our embedding dimension
d = 384.

Encoder We use a stack of standard GPT-2 [4] encoder
blocks. The MLP block inside the encoder (and the decoder)
performs the following operation on an input tensor x

x = Linear(GELU(Linear(z))) (1)

The activation function we use between the linear layers
is the GELU [2] function. The first linear layer changes the
embedding dimensions internally from d to 4d. The second
then goes back from 4d to d.

Decoder The activation 1(") obtained at the last layer of
the encoder is used for performing cross-attention in the
Decoder. We can write the operations of a Decoder block as:

n® = LN(RY))
a” = LN (n(i) + SelfAttention(n(i), n(i))) 3)
b = LN (a(i) + CrossAttention(a(i)7 h(L))))

hp Y = b + MLP(b®), (5)

where LN denotes Layer Normalization [1]. We a add a
single linear layer after both the Encoder and the Decoder to
produce logits. The encoders are only used for constrained
generation, such as floor plan or furniture generation con-
strained on a given floor plan boundary. In free generation,
we do not have any constraints, so we do not add encoders
to any of the models.

References

[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton.
Layer normalization. arXiv preprint arXiv:1607.06450, 2016.
5

[2] Dan Hendrycks and Kevin Gimpel. Gaussian error linear units
(gelus). arXiv preprint arXiv:1606.08415, 2016. 5

[3] Tero Karras, Samuli Laine, and Timo Aila. A style-based gen-
erator architecture for generative adversarial networks. CoRR,
2018. 1

[4] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario
Amodei, and Ilya Sutskever. Language models are unsuper-
vised multitask learners. 2019. 5

[5] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya
Sutskever, and Ruslan Salakhutdinov. Dropout: A simple
way to prevent neural networks from overfitting. Journal of
Machine Learning Research, 2014. 5

