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A. Pseudocode

Due to the limited space, we provide the algorithm of
MIAN in this Section. Details about training-dependent
scaling of βt are in Section E.

Algorithm 1: Multi-source Information-regularized
Adaptation Networks (MIAN)

Input: mini-batch size for each domain m, Number
of source domains N , Training iteration T .
M = m(N + 1), Set of domain labels
V = {1, . . . , N + 1}.
Output: Transferable Encoder F , Classifier C
for t← 1 to T do

X = {xi}Mi=1 = XS1

⋃
· · ·

⋃
XSN

⋃
XT

Y = {yi}mN
i=1 = YS1

⋃
· · ·

⋃
YSN

Encode latent representation zi = F (xi)

// Inner maximization
Optimize discriminator h by the objective L(h)

in (16) using gradient descent.

// Outer minimization
L(F,C) =
− 1

mN

∑
y∈Y

∑
i:yi=y

[
1
T
[k=yi]

log ŷi

]
βt = β0 · 2

(
1− 1

1+exp(−σ·t/T )

)
L(F ) = L(F,C)− βtL(h) ;
Optimize encoder F by the objective L(F ) using
gradient descent.

Optimize classifier C by the objective L(F,C)
using gradient descent.

B. Proofs

In this Section, we present the detailed proofs for Theo-
rems 2, 3 and Lemma 2, explained in the main paper. Fol-
lowing [16], we provide a proof of Theorem 2 below for the
sake of completeness.

B.1. Proof of Theorem 2

Theorem 2. Let PZ(z) be the distribution of Z where z ∈ Z .
Let h be a domain classifier h : Z → V , where Z is the
feature space and V is the set of domain labels. Let hv(Z)
be a conditional probability of V where v ∈ V given Z = z,
defined by h. Then the following holds:

I(Z;V ) = max
hv(z):

∑
v∈V hv(z)=1,∀z∑

v∈V
PV (v)Ez∼PZ|v

[
log hv(z)

]
+H(V )

(1)

Proof. By definition,

I(Z;V ) = DKL

(
P (Z, V ) ∥ P (Z)P (V )

)
=

∑
v∈V

PV (v)Ez∼PZ|v

[
log

PZ,V (z,v)

PZ(z)

]
+H(V )

(2)

Let us constrain the term inside the log by hv(z) =
PZ,V (z,v)

PZ(z) where hv(z) represents the conditional probabil-
ity of V = v for any v ∈ V given Z = z. Then we
have:

∑
v∈V hv(z) = 1 for all possible values of z ac-

cording to the law of total probability. Let h denote the
collection of hv(z) for all possible values of v and z, and
λ be the collection of λz for all values of z. Then, we
can construct the Lagrangian function by incorporating the
constraint

∑
v∈V hv(z) = 1 as follows:

L(h,λ) =
∑
v∈V

PV (v)Ez∼PZ|v

[
log

(
hv(z)

)]
+H(V )

+
∑
z∈Z

λz

(
1−

∑
v∈V

hv(z)
)

(3)

We can use the following KKT conditions:

∂L(h,λ)

∂hv(z)
= PV (v)

PZ|v(z)

h∗
v(z)

− λ∗
z = 0, ∀(z,v) ∈ Z × V

(4)



1−
∑
v∈V

h∗
v(z) = 0, ∀z ∈ Z (5)

Solving the two equations, we have 1 −∑
v∈V

PV (v)PZ|v(z)

λ∗
z

= 0 such that λ∗
z = PZ(z) for all

z. Then for all the possible values of z,

h∗
v(z) =

PZ,V (z,v)

PZ(z)

= PV |z(v),

(6)

where the given h∗
v(z) is same as the term inside log in (2).

Thus, the optimal solution of concave Lagrangian function
(3) obtained by h∗

v(z) is equal to the mutual information
in (2). The substitution of h∗

v(z) into (2) completes the
proof.

Our framework can further be applied to segmentation
problems because it provides a new perspective on pixel
space [19, 20, 13] and segmentation space [22] adaptation.
The generator in pixel space and segmentation space adap-
tation learns to transform images or segmentation results
from one domain to another. In the context of information
regularization, we can view these approaches as limiting in-
formation I(X̂;V ) between the generated output X̂ and the
domain label V , which is accomplished by involving the en-
coder for pixel-level generation. This alleviates the domain
shift in a raw pixel level. Note that one can choose between
limiting the feature-level or pixel-level mutual information.
These different regularization terms may be complementary
to each other depending on the given task.

B.2. Proof of Theorem 3

Theorem 3. Let PZ|x,v(z) be a conditional probabilistic
distribution of Z where z ∈ Z , defined by the encoder F ,
given a sample x ∈ X and the domain label v ∈ V . Let
RZ(z) denotes a prior marginal distribution of Z. Then the
following inequality holds:

I(Z;X,V ) ≤ Ex,v∼PX,V

[
DKL[PZ|x,v ∥ RZ ]

]
+H(V )

+ max
hv(z):

∑
v∈V hv(z)=1,∀z

∑
v∈V

PV (v)EPz∼Z|v

[
log hv(z)

]
(7)

Proof. Based on the chain rule for mutual information,

I(Z;X,V )

= I(Z;V ) + I(Z;X | V )

= H(V ) + I(Z;X | V )

+ max
hv(z):

∑
v∈V hv(z)=1,∀z

∑
v∈V

PV (v)Ez∼PZ|v

[
log hv(z)

]
,

(8)

where the latter equality is given by Theorem 2. Then,

I(Z;X | V )

= Ev∼PV

[
Ez,x∼PZ,X|v

[
log

PZ,X|v(z,x)

PZ|v(z)PX|v(x)

]]
= Ex,v∼PX,V

[
Ez∼PZ|x,v

[
log

PZ|x,v(z)

PZ|v(z)

]]
= Ex,v∼PX,V

[
Ez∼PZ|x,v

[
logPZ|x,v(z)

]]
− Ev∼PV

[
Ez∼PZ|v

[
logPZ|v(z)

]]
≤ Ex,v∼PX,V

[
Ez∼PZ|x,v

[
logPZ|x,v(z)

]]
− Ev∼PV

[
Ez∼PZ|v

[
logRZ(z)

]]
= Ex,v∼PX,V

[
Ez∼PZ|x,v

[
log

PZ|x,v(z)

RZ(z)

]]
= Ex,v∼PX,V

[
DKL

[
PZ|x,v ∥ RZ

]]

(9)

The second equality is obtained by using PZ,X|v(z,x) =
PX|v(x)PZ|x,v(z). The inequality is obtained by using:

DKL[PZ|v ∥ RZ ] = Ez∼PZ|v

[
logPZ|v(z)− logRZ(z)

]
,

(10)
where RZ(z) is a variational approximation of the prior
marginal distribution of Z. The last equality is obtained
from the definition of KL-divergence. The substitution of
(9) into (8) completes the proof.

The existing DA work on semantic segmentation tasks
[12, 21] can be explained as the process of fostering close
collaboration between the aforementioned information bot-
tleneck terms. The only difference between Theorem 3 for
V = {0, 1} and the objective function in [12] is that [12]
employed the shared encoding PZ|x(z) instead of PZ|x,v(z),
whereas some adversarial DA approaches use the unshared
one [23].

B.3. Proof of Lemma 2

Lemma 2. Let dH(V) = 1
N+1

∑
v∈V dH(Dv, Dvc). LetH

be a hypothesis class. Then,

dH(V) ≤ 1

N(N + 1)

∑
v,u∈V

dH(Dv, Du). (11)

Proof. Let α = 1
N represents the uniform domain weight



for the mixture of domain Dvc . Then,

dH(V)

=
1

N + 1

∑
v∈V

dH(Dv, Dvc)

=
1

N + 1

∑
v∈V

2 sup
h∈H

∣∣∣Ex∼PDX
v

[
I
(
h(x = 1)

)]
− Ex∼P

DX
vc

[
I
(
h(x = 1)

)]∣∣∣
=

1

N + 1

∑
v∈V

2 sup
h∈H

∣∣∣∣ ∑
u∈V:u̸=v

α
(
Ex∼PDX

v

[
I
(
h(x = 1)

)]
− Ex∼PDX

u

[
I
(
h(x = 1)

)])∣∣∣∣
≤ 1

N + 1

∑
v∈V

∑
u∈V:u̸=v

α · 2 sup
h∈H

∣∣∣∣Ex∼PDX
v

[
I
(
h(x = 1)

)]
− Ex∼PDX

u

[
I
(
h(x = 1)

)]∣∣∣∣
=

1

N(N + 1)

∑
v,u∈V

dH(Dv, Du),

(12)

where the inequality follows from the triangluar inequality
and jensen’s inequality.

C. Experimental setup
In this Section, we describe the datasets, network archi-

tecture and hyperparameter configuration.

C.1. Datasets

We validate the Multi-source Information-regularized
Adaptation Networks (MIAN) with the following bench-
mark datasets: Digits-Five, Office-31 and Office-Home. Ev-
ery experiment is repeated four times and the average accu-
racy in target domain is reported.

Digits-Five [15] dataset is a unified dataset including five
different digit datasets: MNIST [8], MNIST-M [4], Synthetic
Digits [4], SVHN, and USPS. Following the standard proto-
cols of unsupervised MDA [26, 15], we used 25000 training
images and 9000 test images sampled from a training and a
testing subset for each of MNIST, MNIST-M, SVHN, and
Synthetic Digits. For USPS, all the data is used owing to the
small sample size. All the images are bilinearly interpolated
to 32× 32.

Office-31 [17] is a popular benchmark dataset includ-
ing 31 categories of objects in an office environment. Note
that it is a more difficult problem than Digits-Five, which
includes 4652 images in total from the three domains: Ama-
zon, DSLR, and Webcam. All the images are interpolated to
224× 224 using bicubic filters.

Office-Home [24] is a challenging dataset that includes
65 categories of objects in office and home environments. It
includes 15,500 images in total from the four domains: Artis-
tic images (Art), Clip Art(Clipart), Product images (Product),
and Real-World images (Realworld). All the images are in-
terpolated to 224× 224 using bicubic filters.

C.2. Architectures

(a) Existing works

(b) Proposed model

Figure 1: Comparison of existing and proposed MDA mod-
els. (a) Existing multiple-discriminator based methods align
each pairwise source and target domain but may fail due
to the disintegration of domain-discriminative knowledge.
It also may suffer from unstable optimization and lack of
resource-efficiency. (b) Our proposed model mitigates sug-
gested problems by unifying domain discriminators.

Simulation setting For the Digits-Five dataset, we use
the same network architecture and optimizer setting as in
[15]. For all the other experiments, the results are based on
ResNet-50, which is pre-trained on ImageNet. The domain
discriminator is implemented as a three-layer neural network.
Detailed architecture is shown in Figure 2.

We compare our method with the following state-of-the-
art domain adaptation methods: Deep Adaptation Network
(DAN, [10]), Joint Adaptation Network (JAN, [11]), Mani-
fold Embedded Distribution Alignment (MEDA, [25]), Do-
main Adversarial Neural Network (DANN, [5]), Domain-
Specific Batch Normalization (DSBN, [2]), Batch Spectral
Penalization (BSP, [3]), Adversarial Discriminative Domain
Adaptation (ADDA, [23]), Maximum Classifier Discrepancy



(a) Encoder, domain discriminator, and classifier used in Digits-
Five experiments

(b) Encoder, domain discriminator, and classifier used in Office-
31 and Office-Home experiments

Figure 2: Network architectures. BN denotes Batch Normal-
ization [6] and SVD denotes differentiable SVD in PyTorch
for MIAN-γ (Section E)

(MCD, [18]), Deep Cocktail Network (DCTN, [26]), and
Moment Matching for Multi-Source Domain Adaptation
(M3SDA, [15]).

Hyperparameters Details of the experimental setup are
summarized in Table 1. Other state-of-the-art adaptation
models are trained based on the same setup except for these
cases: DCTN show poor performance with the learning
rate shown in Table 1 for both Office-31 and Office-Home
datasets. Following the suggestion of the original authors,
1e−5 is used as a learning rate with the Adam optimizer [7];
MCD show poor performance for the Office-Home dataset
with the learning rate shown in Table 1. 1e−4 is selected
as a learning rate. For both the proposed and other base-
line models, the learning rate of the classifier or domain
discriminator trained from the scratch is set to be 10 times
of those of ImageNet-pretrained weights, in Office-31 and
Office-Home datasets. More hyperparameter configurations
are summarized in Table 2 (Section E)

D. Additional results

Visualization of learned latent representations. We vi-
sualized domain-independent representations extracted by
the input layer of the classifier with t-SNE (Figure 3). Before
the adaptation process, the representations from the target
domain were isolated from the representations from each
source domain. However, after adaptation, the representa-
tions were well-aligned with respect to the class of digits, as
opposed to the domain.

Hyperparameter sensitivity. We conducted the analysis
on hyperparameter sensitivity with degree of regularization
β. The target domain is set as Amazon or Art, where the
value β0 changes from 0.1 to 0.5. The accuracy is high when
β0 is approximately between 0.1 and 0.3. We thus choose
β0 = 0.2 for Office-31, and β0 = 0.3 for Office-Home.

(a) Before adaptation (b) After adaptation

Figure 3: t-SNE visualization (a) before and (b) after adapta-
tion. Representations from target domain (SVHN) are shown
in red. Digit class labels are shown with corresponding num-
bers.

Figure 4: Analysis on hyperparameter sensitivity.

E. Decaying Batch Spectral Penalization
In this Section, we provides details on the Decaying Batch

Spectral Penalization (DBSP) which expands MIAN into
MIAN-γ.

E.1. Backgrounds

There is little motivation for models to control the com-
plex mutual dependence to domains if reducing the entropy
of representations is sufficient to optimize the value of
I(Z;V ) = H(Z) − H(Z | V ). If so, such implicit en-
tropy minimization substantially reduce the upper bound of



Table 1: Experimental setup. The batch size for each domain is reported.

Dataset Optimization method Learning rate Momentum Batch size Iteration

Digits-Five Adam 2e−4 (0.9, 0.99) 128 50000
Office-31 mini-batch SGD 1e−3 0.9 16 25000

Office-Home mini-batch SGD 1e−3 0.9 16 25000

I(Z;Y ), potentially leading to a increase in optimal joint
risk λ∗. In other words, the decrease in the entropy of repre-
sentations may occur as the side effect of I(Z;V ) regular-
ization. Such unexpected side effect of information regular-
ization is highly intertwined with the hidden deterioration of
discriminability through adversarial training [3, 9].

Based on these insights, we employ the SVD-entropy
HSV D(Z) [1] of a representation matrix Z to assess the rich-
ness of the latent representations during adaptation, since
it is difficult to compute H(Z). Note that while HSV D(Z)
is not precisely equivalent to H(Z), HSV D(Z) can be used
as a proxy of the level of disorder of the given matrix [14].
In future works, it would be interesting to evaluate the tem-
poral change in entropy with other metrics. We found that
HSV D(Z) indeed decreases significantly during adversarial
adaptation, suggesting that some eigenfeatures (or eigen-
samples) become redundant and, thus, the inherent feature-
richness diminishes (Figure 5a). To preclude such deterio-
ration, we employ Batch Spectral Penalization (BSP) [3],
which imposes a constraint on the largest singular value to
solicit the contribution of other eigenfeatures. The overall
objective function in the multi-domain setting is defined as:

min
F,C

L(F,C) + βÎ(Z;V ) + γ

N+1∑
i=1

k∑
j=1

s2i,j , (13)

where β and γ are Lagrangian multipliers and si,j is the jth
singular value from the ith domain. We found that SVD
entropy of representations is severely deteriorated especially
in the early stages of training (Figure 5a), suggesting the
possibility of over-regularization. The noisy domain dis-
criminative signals in the initial phase [5] may distort and
simplify the representations. To circumvent the impaired
discriminability in the early stages of the training, the dis-
criminability should be prioritized first with high γ and low
β, followed by a gradual decaying and annealing in γ and
β, respectively, so that a sufficient level of domain trans-
ferability is guaranteed. Based on our temporal analysis,
we introduce the training-dependent scaling of β and γ by
modifying the progressive training schedule [5]:

βp = β0 · 2
(
1− 1

1 + exp(−σ · p)
)

γp = γ0 ·
( 2

1 + exp(−σ · p)
− 1

)
,

(14)

where β0 and γ0 are initial values, σ is a decaying param-
eter, and p is the training progress from 0 to 1. We refer
to this version of our model as MIAN-γ. Note that MIAN
only includes annealing-β, excluding DBSP. For the pro-
posed method, β0 is chosen from {0.1, 0.2, 0.3, 0.4, 0.5} for
Office-31 and Office-Home dataset, while β0 = 1.0 is fixed
in Digits-Five. γ0 is fixed to 1e−4 following [3].

Table 2: Hyper parameters configuration. Annealing-β is
not adopted in the Digits-Five experiment. Decaying batch
spectral penalization is not adopted in the MIAN.

Dataset(Model) β0 γ0 σ k

Digits-Five (MIAN) 1.0 N/A N/A N/A
Office-31 (MIAN) 0.1 N/A 10.0 N/A

Office-31 (MIAN-γ) 0.2 0.0001 10.0 1
Office-Home (MIAN) 0.3 N/A 10.0 N/A

Office-Home (MIAN-γ) 0.3 0.0001 10.0 1

E.2. Experiments

(a) (b)

Figure 5: (a): SVD-entropy analysis. (Office-31; Source
domain: DSLR) (b): Comparisons between BSP and DBSP.
(Office-31; DSLR→ Amazon)

SVD-entropy. We evaluated the degree of compromise
of SVD-entropy owing to transfer learning. For this, DSLR
was fixed as the source domain, and each Webcam and
Amazon target domain was used to simulate low (DSLR→
Webcam; DW) and high domain (DSLR→Amazon; DA)
shift conditions, respectively. SVD-entropy was applied
to the representation matrix extracted from ResNet-50 and
MIAN (denoted as Adapt in Figure 5a) with constant



β = 0.1. For accurate assessment, we avoided using spec-
tral penalization. As depicted in the Figure 5a, adversar-
ial adaptation, or information regularization, significantly
decreases the SVD-entropy of both the source and target
domain representations, especially in the early stages of
training, indicating that the representations are simplified
in terms of feature-richness. Moreover, when comparing
the Adapt_DA_source and Adapt_DW_source conditions,
we found that SVD-entropy decreases significantly as the
degree of domain shift increases.

We additionally conducted analyses on temporal changes
of SVD entropy by comparing BSP and decaying BSP (Fig-
ure 5b). SVD entropy gradually decreases as the degree of
compensation decreases in DBSP which leads to improved
transferability and accuracy. Thus DBSP can control the
trade-off between the richness of the feature representations
and adversarial adaptation as the training proceeds.

Ablation study of decaying spectral penalization. We
performed an ablation study to assess the contribution of the
decaying spectral penalization and annealing information
regularization to DA performance (Table 3, 4). We found
that the prioritization of feature-richness in early stages (by
controlling β and γ) significantly improves the performance.
We also found that the constant penalization schedule [3] is
not reliable and sometimes impedes transferability in the low
domain shift condition (Webcam, DSLR in Table 3). This
implies that the conventional BSP may over-regularize the
transferability when the degree of domain shift and SVD-
entropy decline are relatively small.



Table 3: Ablation study of decaying batch spectral penalization and annealing information regularization (Office-31). For
accurate assessment of extent to which performance improvement is caused by each strategies, γ is fixed as 0 in Annealing-β,
and β is fixed as 0.1 in Decaying-γ. Results from Annealing-β and Full version are reported in main paper as MIAN and
MIAN-γ, respectively.

Standards Hyper parameters Amazon DSLR Webcam Avg

Baseline β = 0.1 as a constant 69.98 99.48 98.13 89.20

Annealing-β
(MIAN) β0 = 0.1, σ = 10 74.65 99.48 98.49 90.87

Decaying-γ BSP: γ = 1e−4 as a constant 74.73 98.65 96.24 89.87
DBSP: γ0 = 1e−4, σ = 10 75.01 99.68 98.10 90.93

Full version
(MIAN-γ) β0 = 0.1, γ0 = 1e−4, σ = 10 76.17 99.22 98.39 91.26

Table 4: Accuracy (%) on Office-Home dataset.

Standards Art Clipart Product Realworld Avg

MIAN 69.39±0.50 63.05±0.61 79.62±0.16 80.44±0.24 73.12

MIAN-γ 69.88±0.35 64.20±0.68 80.87±0.37 81.49±0.24 74.11
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