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1. Details of training DD3D and PL
We provide the training details used for supervised

monocular depth pre-training of both DD3D and PackNet.
DD3D. During pre-training, we use 512 as a batch size,
and train for 375K steps until convergence. The learn-
ing rate starts at 0.02, decayed by 0.1 at the 305K-th and
365K-th steps. The size of the input images (and projected
depth map) is 1600 × 900, and we resize them to 910 ×
512. When resizing the depth maps, we preserve the sparse
depth values by assigning all non-zero depth values to the
nearest-neighbor pixel in the resized image space (note that
this is different from naive nearest-neighbor interpolation,
where the target depth value is assigned zero, if the nearest-
neighbor pixel in the original image does not have depth
value.) We observed that training converges after 30 epochs.
We use the Adam optimizer with β = 0.99. For all super-
vised depth pre-training splits, we use an L1 loss between
predicted depth and projective ground-truth depth.

When training as 3D detectors, the learning rate starts
at 0.002, and is decayed by 0.1, when the training reaches
85% and 95% of the entire duration. We use a batch size
of 64, and train for 25K and 120K steps for KITTI-3D and
nuScenes, respectively. The µl and σl are initialized as the
mean and standard deviation of the depth of the 3D boxes
that are associated with each FPN level, αl as the stride size
of the associated FPN level, and c is fixed to 1

500 . The raw
predictions are filtered by non-maxima suppression (NMS)
using IoU criteria on 2D bounding boxes. For the nuScenes
benchmark, to address duplicated detections in the over-
lapping frustums of adjacent cameras, an additional BEV-
based NMS is applied across all 6 synchronized images (i.e.
a sample) after converting the detected boxes to the global
reference frame.
PackNet. When training PackNet [1], the depth network of
PL, we use a batch size of 4 and a learning rate of 5× 10−5

with input resolution of 640× 480. We use only front cam-
era images of DDAD15M to pre-train PackNet, and train
until convergence, and for 5 epochs over the KITTI Eigen-
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clean split during fine-tuning. The PL detector is trained
with a learning rate of 1 × 10−4 for 100 epochs, decayed
by 0.1 after 40 and 80 epochs, respectively. For both net-
works we use the Adam [4] optimizer with β1 = 0.9 and
β2 = 0.999. Both DD3D and PL are implemented using
Pytorch [6] and trained on 8 V100 GPUs.

2. DD3D architecture details
FPN [3] is composed of a bottom-up feed-forward CNN
that computes feature maps with a subsampling factor of 2,
and a top-down network with lateral connections that recov-
ers high-resolution features from low-resolution ones. The
FPNs yield 5 levels of feature maps. DLA-34 [11] FPN
yields three levels of feature maps (with strides of 8, 16,
and 32). We add two lower resolution features (with strides
of 64, 128) by applying two 3 × 3 2D convs with stride of
2 (see Figure ??). V2-99 [2] by default produces 4 levels of
features (strides = 4, 8, 16, and 32), so only one additional
conv is used to complete 5 levels feature maps. Note that
the final resolution of FPN features derived from DLA-34
and V2-99 network are different, strides=8, 16, 32, 64, 128
for DLA-34, strides= 4, 8, 16, 32, 64 for V2-99.
2D detection head. We closely follow the decoder archi-
tecture and loss formulation of [9]. In addition, we adopt
the positive instance sampling approach introduced in the
updated arXiv version [10]. Specifically, only the center-
portion of the ground truth bounding box is used to assign
positive samples in Lreg and L3D.

3. Pseudo-Lidar 3D confidence head
Our PL 3D detector is based on [5], and outputs 3D

bounding boxes with 3 heads, separated based on distance
(i.e. near, medium and far). Following [8, 7] we modify
each head to output a 3D confidence, trained through the
3D bounding box loss. Specifically, each 3D box estima-
tion head consists of 3 fully connected layers with dimen-
sions 512 −→ 512 −→ 256 −→ (δ, γ), where δ denotes the
bounding box parameters as described in [5], and γ denotes
the 3D bounding box confidence.
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Figure 1: We evaluate depth performance (abs rel)
against PL 3D detection performance (Car Mod. 3D
AP|R40 ) at each pre-training step. All results are com-
puted on the KITTI-3D validation split.

4. The impact of data on Pseudo-Lidar depth
and 3D detection accuracy

We evaluate depth quality against the 3D detection ac-
curacy of the PL detector, with results shown in Figure 1.
Our results indicate an almost perfect linear relationship be-
tween depth quality as measured by the abs rel metric and
3D detection accuracy for our PL-based detector.
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