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1. Details of training DD3D and PL

We provide the training details used for supervised
monocular depth pre-training of both DD3D and PackNet.
DD3D. During pre-training, we use 512 as a batch size,
and train for 375K steps until convergence. The learn-
ing rate starts at 0.02, decayed by 0.1 at the 305K-th and
365K-th steps. The size of the input images (and projected
depth map) is 1600 x 900, and we resize them to 910 x
512. When resizing the depth maps, we preserve the sparse
depth values by assigning all non-zero depth values to the
nearest-neighbor pixel in the resized image space (note that
this is different from naive nearest-neighbor interpolation,
where the target depth value is assigned zero, if the nearest-
neighbor pixel in the original image does not have depth
value.) We observed that training converges after 30 epochs.
We use the Adam optimizer with 5 = 0.99. For all super-
vised depth pre-training splits, we use an L1 loss between
predicted depth and projective ground-truth depth.

When training as 3D detectors, the learning rate starts
at 0.002, and is decayed by 0.1, when the training reaches
85% and 95% of the entire duration. We use a batch size
of 64, and train for 25K and 120K steps for KITTI-3D and
nuScenes, respectively. The y; and oy are initialized as the
mean and standard deviation of the depth of the 3D boxes
that are associated with each FPN level, o; as the stride size
of the associated FPN level, and c is fixed to ﬁ. The raw
predictions are filtered by non-maxima suppression (NMS)
using IoU criteria on 2D bounding boxes. For the nuScenes
benchmark, to address duplicated detections in the over-
lapping frustums of adjacent cameras, an additional BEV-
based NMS is applied across all 6 synchronized images (i.e.
a sample) after converting the detected boxes to the global
reference frame.

PackNet. When training PackNet [ 1], the depth network of
PL, we use a batch size of 4 and a learning rate of 5 x 107°
with input resolution of 640 x 480. We use only front cam-
era images of DDAD15M to pre-train PackNet, and train
until convergence, and for 5 epochs over the KITTI Eigen-
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clean split during fine-tuning. The PL detector is trained
with a learning rate of 1 x 10~* for 100 epochs, decayed
by 0.1 after 40 and 80 epochs, respectively. For both net-
works we use the Adam [4] optimizer with 5; = 0.9 and
B2 = 0.999. Both DD3D and PL are implemented using
Pytorch [6] and trained on 8§ V100 GPUs.

2. DD3D architecture details

FPN [3] is composed of a bottom-up feed-forward CNN
that computes feature maps with a subsampling factor of 2,
and a top-down network with lateral connections that recov-
ers high-resolution features from low-resolution ones. The
FPNs yield 5 levels of feature maps. DLA-34 [11] FPN
yields three levels of feature maps (with strides of 8, 16,
and 32). We add two lower resolution features (with strides
of 64, 128) by applying two 3 x 3 2D convs with stride of
2 (see Figure ??). V2-99 [2] by default produces 4 levels of
features (strides = 4, 8, 16, and 32), so only one additional
conv is used to complete 5 levels feature maps. Note that
the final resolution of FPN features derived from DLA-34
and V2-99 network are different, strides=8, 16, 32, 64, 128
for DLA-34, strides=4, 8, 16, 32, 64 for V2-99.

2D detection head. We closely follow the decoder archi-
tecture and loss formulation of [9]. In addition, we adopt
the positive instance sampling approach introduced in the
updated arXiv version [10]. Specifically, only the center-
portion of the ground truth bounding box is used to assign
positive samples in £, and L3p.

3. Pseudo-Lidar 3D confidence head

Our PL 3D detector is based on [5], and outputs 3D
bounding boxes with 3 heads, separated based on distance
(i.e. near, medium and far). Following [8, 7] we modify
each head to output a 3D confidence, trained through the
3D bounding box loss. Specifically, each 3D box estima-
tion head consists of 3 fully connected layers with dimen-
sions 512 — 512 — 256 — (d, ), where § denotes the
bounding box parameters as described in [5], and y denotes
the 3D bounding box confidence.
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Figure 1: We evaluate depth performance (abs_rel)

against PL. 3D detection performance (Car Mod. 3D
AP|R,,) at each pre-training step. All results are com-
puted on the KITTI-3D validation split.

4. The impact of data on Pseudo-Lidar depth
and 3D detection accuracy

We evaluate depth quality against the 3D detection ac-
curacy of the PL detector, with results shown in Figure 1.
Our results indicate an almost perfect linear relationship be-
tween depth quality as measured by the abs rel metric and
3D detection accuracy for our PL-based detector.
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