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Appendix
We describe additional experimental results to comple-

ment the main paper (§A). The implementation details are
in §B. Finally, we provide the detailed evaluation protocols
(§C).

A. Additional experimental results
A.1. More visual examples

We show more generated glyphs in Figure A.2. MX-Font
correctly synthesizes the strokes, dot, thickness and size of
the ground truth glyphs. In the cross-lingual FFG, MX-Font
can produce promising results in that they are all readable.
Meanwhile, all other competitors provide inconsistent re-
sults, which are often impossible to understand. These re-
sults show a similar conclusion as our main paper.

A.2. Impact of the number of experts

In Table A.1, we report the performances by varying the
number of experts, k. We observe that larger k brings bet-
ter performances until k = 6, but larger k, e.g., 8, shows
slightly worse performance than k = 6. We presume that
this is because there are no sufficient data having more than
or equal to eight components for training all the eight ex-
perts to capture different concepts. Figure A.1 illustrates the
frequency of the number of components. From this graph,
we find that the most characters have less than 8 compo-
nents in our Chinese dataset. Moreover, larger k means the
number of parameters are increased, resulting in more train-
ing and inference runtime. Hence, in the paper, we choose
k = 6 for all experiments.

B. Implementation details
B.1. Network architecture

Each localized expert Ei has 11 layers including convo-
lution, residual, global-context [3], and convolutional block
attention (CBAM) [18] blocks. The multiple localized ex-
perts share the weights of their first five blocks. The two
feature classifiers Clss and Clsu have the same structure;
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Figure A.1. The distribution of number of components. The left
shows the percentage of characters with different number of com-
ponents and the right shows the cumulative summation of the left.

k Acc (S) ↑ Acc (C) ↑ Acc (B) ↑ LPIPS ↓

1 72.2 98.7 71.4 0.133
2 79.0 99.3 78.5 0.128
4 78.3 99.5 78.0 0.125
6 78.9 99.5 78.7 0.120
8 75.5 99.5 75.2 0.123

Table A.1. Impact of the number of experts k. The models with
different number of heads are compared on in-domain Chinese
transfer benchmark. We used k = 6 for all experiments.

a linear block following two residual blocks. The weights
of the first two residual blocks are shared. The generator G
consists of convolution and residual blocks. Please refer our
code for the detailed architecture.

B.2. Component allocation problem to weighted bi-
partite B-matching problem

Given a bipartite graph G = (V,E), where V is a set
of vertices, E is a set of edges and W is the weight val-
ues for each edge e ∈ E, the weighted bipartite B-matching
(WBM) problem [13] aims to find subgraph H = (V,E′)
maximizing

∑
e∈E W (e) with every vertex v ∈ V adjacent

to at most the given budget, B(v), edges. WBM problem
can be solved by the Hungarian algorithm [14], a typical
algorithm to solve combinatorial optimization in a poly-
nomial time, in O(|V ||E|) = O(|V |3). For curious read-
ers, we refer recent papers solving variants of WBM prob-
lems [5, 1].
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Figure A.2. Generation samples. We provide more generated glyphs with four reference glyphs.



We recall the component allocation problem described in
the main paper:

max
wij∈{0,1}|i=1...k,j∈Uc

k∑
i=1

∑
j∈Uc

wijpij ,

s.t.
k∑

i=1

wij ≥ 1 for ∀j,
∑
j∈Uc

wij ≥ 1 for ∀i,

∑
j∈Uc

wij ≤ max

(
1,

⌈
m

k

⌉)
for ∀i

k∑
i=1

wij ≤ max

(
1,

⌈
k

m

⌉)
for ∀j.

(B.1)

We replace the last condition,
∑k

i=1

∑
j∈Uc

wij =
max(k,m) to the upper bound condition where ⌈·⌉ denotes
the ceiling function. For example, if k = 3 and m = 4, the
budget for each expert is 2, while the budget for each com-
ponent is 1. We build a bipartite graph where the vertex set
contains all experts and all valid components, and the edge
weights are the prediction probability pij . Now (B.1) can be
re-formulated by the WBM problem.

B.3. HSIC Formulation

When training MX-Font, we let the two feature outputs
from different experts, or content and style features inde-
pendent of each other. To measure the independence be-
tween content feature and style feature, we first assume
that the content features fc and the style features fs are
drawn from two different random variables, Zc and Zs, i.e.,
fc ∼ Zc and fs ∼ Zs. We employ Hilbert Schmidt indepen-
dence criterion (HSIC) [7] to measure the independence be-
tween two random variables. For two random variables Zc

and Zs, HSIC is defined as HSICk,l(Zc, Zs) := ||Ck,l
ZcZs

||2HS

where k and l are kernels, Ck,l is the cross-covariance oper-
ator in the Reproducing Kernel Hilbert Spaces (RKHS) of
k and l, || · ||HS is the Hilbert-Schmidt norm [7, 8]. If we
use radial basis function (RBF) kernels for k and l, HSIC is
zero if and only if two random variables are independent.

Since we only have the finite number of samples drawn
from the distributions, we need a finite sample estimator of
HSIC. Following Bahng et al. [2], we employ an unbiased
estimator of HSIC, HSICk,l

1 (Zc, Zs) [17] with m samples.
Formally, HSICk,l

1 (Zc, Zs) is defined as:

HSICk,l
1 (Zc, Zs) =

1

m(m− 3)

[
tr(Z̃cZ̃

T
s ) +

1T Z̃c11
T Z̃T

s 1

(m− 1)(m− 2)
− 2

m− 2
1T Z̃cZ̃

T
s 1

] (B.2)

where (i, j)-th element of a kernel matrix Z̃c is defined
as, Z̃c(i, j) = (1 − δij) k(f

i
c, f

j
c ), and the i-th feature in

the mini-batch f i
c , is assumed to be sampled from the Zc,

i.e., {f i
c} ∼ Zc. We similarly define Z̃s(i, j) = (1 −

δij) l(f
i
s, f

j
s ).

In practice, we compute HSICk,l
1 (Zc, Zs) in a mini-

batch, i.e., m is the batch size. We use the RBF kernel with
kernel radius 0.5, i.e., k(f i

c, f
j
c ) = exp(− 1

2∥f
i
c − f j

c ∥22).

B.4. GAN objective details

We employ two conditional discriminators Ds and Dc

which predict a style label ys and a content label yc, respec-
tively. In practice, we employ a multitask discriminator D,
and different projection embeddings for content labels and
style labels, following the previous methods [15, 4, 16]. The
hinge loss [20] is employed to high fidelity generation:

LD
adv = E(x,yc,ys) [[1−D(x, ys)]+ + [1−D(x, yc)]+]

+E(x̃,yc,ys) [[1−D(x̃, ys)]+ + [1−D(x̃, yc)]+]

LG
adv = −E(x̃,yc,ys) [D(x̃, ys) +D(x̃, yc)] ,

(B.3)

where x̃ is the generated image by combining a content fea-
ture extracted from an image with content label yc and a
style feature extracted from an image with style label ys.

The feature matching loss Lfm and the reconstruction
loss Lrecon are formulated as follows:

Lfm = E(x,x̃)

[
L−1∑
l=1

∥Dl(x)−Dl(x̃)∥1

]
,

Lrecon = E(x,x̃) [∥x− x̃∥1] ,

(B.4)

where L is the number of layers in the discriminator D and
Dl denotes the output of l-th layer of D.

B.5. Training details

We use Adam [12] optimizer to optimize the MX-Font.
The learning rate is set to 0.001 for the discriminator and
0.0002 for the remaining modules. The mini-batch is con-
structed with the target glyph, style glyphs, and content
glyph during training. Specifically, we first pick the target
glyph randomly. Then, we randomly select n style glyphs
with the same style as the target glyph, and n content glyphs
with the same character as the target glyph for each tar-
get glyph. Here, the target glyph is excluded from the style
and content glyphs selection. We set n to 3 during training.
We set the number of heads k to 6 and train the model for
650k iteration with the full objective functions for the Chi-
nese glyph generation. For the Korean, we set the number of
heads k to 3 and train the model for 200k iteration with the
all objective functions except Lindp exp,i. We do not employ
the Lindp exp,i during training for the Korean glyph genera-
tion, due to the special characteristic of the Korean script;
always decomposed to fixed number of components, e.g., 3.



(a) User study example (Chinese generation)

(b) User study example (Korean generation)

Figure C.1. User study examples. The example images that we
provide to the candidates are shown. Each image includes the ref-
erence images, source images, and the generated images.

C. Evaluation details

C.1. Classifiers

Three classifiers are trained for the training; the style
classifier, the Chinese character classifier, and the Ko-
rean character classifier. The style classifier and the Chi-
nese character classifier are trained with the same Chi-
nese dataset, including 209 Chinese fonts and 6428 Chinese
characters per font. Besides, we used the Korean dataset that
DM-Font [4] provides to train the Korean character classi-
fier. The classifiers have ResNet-50 [9] structure. We opti-
mize the classifiers using AdamP optimizer [10] with learn-
ing rate 0.0002 for 20 epochs. During training, the CutMix
augmentation [19] is adopted and the mini-batch size is set
to 64.

C.2. LF-Font modification

Since LF-Font [16] cannot handle the unseen compo-
nents in the test time due to its component-conditioned
structure, we modify its structure to enable the cross-lingual
font generation. We loose the component-condition of LF-
Font in the test time only, by skipping the component-
condition block when the unseen component is given. Note
that, we use original LF-Font structure for the training to
reproduce its original performance.

CN −→ CN CN −→ KR
FIDs S C H S C H

EMD 145.5 51.1 79.7 220.3 113.8 150.0
AGIS-Net 91.0 10.8 19.2 235.5 106.5 146.5
FUNIT 50.6 11.8 19.2 486.4 107.4 176.0
LF-Font 43.5 9.0 14.8 187.8 123.4 148.7
MX-Font 50.5 13.9 21.8 113.2 78.1 84.1

Table C.1. We provide style-aware (S), content-aware(C) FIDs
measured by the style and content classifiers. The harmonic mean
(H) of the style-aware and the content-aware FIDs values are iden-
tical to the values reported in the main table.

C.3. User study examples

We show the sample images used for the user study
in Figure C.1. Five methods, including EMD [21], AGIS-
Net [6], FUNIT [15], LF-Font [16], and MX-Font are ran-
domly displayed to users for every query.

C.4. FID

We measure the style-aware and content-aware Frechét
inception distance (FID) [11] between generated images
and rendered images using the style and content classifier.
For the Chinese glyphs, the style-aware and content-aware
FIDs are measured with the generated glyphs and the corre-
sponding ground truth glyphs. Since the ground truth glyphs
of cross-lingual generation do not exist, the style-aware FID
is measured the generated glyphs and all the available ren-
dered glyphs having the same style with the generated im-
ages. The content-ware FID is measured similar to the style-
aware FID. The style-aware (S) and the content-aware (C)
FID values and their harmonic mean (H) are reported in
Table C.1. Despite that MX-Font shows the slight degra-
dation in FID for Chinese font generation, these results are
not consistent with the user study and qualitative evaluation.
For quantifying the image quality, we tend to trust the user
study more because it better reveals the user’s preference.
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