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A. Details of SE(3) Field Formulation
As mentioned in the main text, we encode a rigid trans-

form as a screw axis [14] S = (r;v) ∈ R6 where

er ≡ e[r]× = I+
sin θ

θ
[r]× +

1− cos θ

θ2
[r]2× . (1)

[x]× is a skew-symmetric matrix also known as the cross-
product matrix of a vector x since given two 3-vectors a and
b, [a]×b gives the cross product a× b.

[x]× =

 0 −x3 x2
x3 0 −x1
−x2 x1 0

 . (2)

The translation encoded by the screw motion S can be re-
covered as p = Gv where

G = I+
1− cos θ

θ2
[r]× +

θ − sin θ

θ3
[r]2× . (3)

The exponential of S can also be expressed in homogeneous
matrix form eS ∈ SE(3):

eS =

(
er p
0 1

)
. (4)

The deformed point is then given by x′ = eSx.

Why does an SE(3) field work better? Consider the ex-
ample in Fig. 1 where a star has been rotated counter-
clockwise along its center. Now consider what transforma-
tion would be required at every point on the star to encode
this rotation. With a translation field, points towards the
center (e.g., t2) need translations of small magnitude while
points towards the outside (e.g., t1) need translations of
larger magnitude. Every point on the star requires a different
parameter to encode a simple rotation. On the otherhand,
with a rotation, every point on the star can be parameterized
by a single angle which is the angle of rotation θ = θ1 = θ2.

θ1
t1

t2
θ2

Figure 1: Here we illustrate why a rigid transformation
field works better than a translation field with a simple toy
example where a star is rotated counter-clockwise around
its center. A translation field requires different parameters
for every point to encode the rotation (e.g.,‖t1‖ � ‖t2‖)
whereas a rotation field only needs a single parameter to
encode the rotation (e.g., θ1 = θ2). More details in §A.

This makes optimization much easier since the deformation
field MLP only needs to predict a single parameter across
space. We illustrate this further in §I.

B. Details of Coarse-to-Fine Optimization

Window Function: Our coarse-to-fine deformation regular-
ization is implemented by windowing the frequency bands
of the positional encoding. Eqn. 8 of the main paper de-
fines this windowing function as a weight applied to each
frequency band. We visualize our windowing function for
different values of α in Fig. 3.
NTK: We also show a visualization of the neural tangent
kernel (NTK) induced by our annealed positional encoding
in Fig. 2. This figure shows the normalized NTK for an 8
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Figure 2: Visualizations of the neural-tangent kernel
(NTK) [9] of our annealed positional encoding for differ-
ent values of α. Our coarse-to-fine optimization scheme
works by easing in the influence of each positional encoding
frequency through a parameter α. This has the effect of
shrinking the bandwidth of the NTK corresponding to the
deformation MLP as α is increased, thereby allowing higher
frequency deformations.

layer MLP of width 256. Note how the bandwidth of the
interpolation kernel gets narrower as the value of α increases.

C. Details of Elastic Regularization
Motivation for elastic energy formulation. Elastic ener-
gies are often implemented as the deviation of the Jaco-
bian J from the closest rotation R: ‖J−R‖F [p45]. Let
J = UDVT be the SVD of J, then R = UMVT where
M = diag

(
1, . . . , 1,det(UVT )

)
. It follows that:

‖J−R‖F =
∥∥∥UDVT −UMVT

∥∥∥
F

(5)

=
∥∥∥U(D−M)VT

∥∥∥
F

(6)

=

√
tr
(
U(D−M)VTV(D−M)UT

)
(7)

=

√
tr
(
U(D−M)2UT

)
(8)

=
√

tr
(
(D−M)2

)
(9)

=

√∑
j

(σj −mj)2 , (10)

wheremj is the jth diagonal of M and σj is the jth singular
value of J. This is equivalent to penalizing the deviation
of the singular values of J from 1. The M matrix factors
in reflections as negative singular values rather a reflection
in U or V. Because this formulation penalizes expansions
more than contractions of the same factor, we penalize the
log of the singular values directly.

D. Additional Illustrations
Unintentional Movement: In Fig. 4 we show an example
of how a person can move even when trying to sit still. We

Figure 3: A visualization of the window function wj(α)
for the annealed positional encoding. We show an example
with a maximum number of frequency bands of m = 4
where j ∈ {0, . . . ,m − 1}. α = 0 sets the weight of all
frequency bands to zero leaving only the identity mapping,
while an α = 4 sets the weight of all frequency bands to one.
Increasing the value of α is equivalent to sliding the window
to the right across the frequency bands.
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Figure 4: Users move even when trying not to. Here we
visualize the depth difference and deformation magnitude
between the template and an observation.

example inputs ground truth rendered color rendered depth

Figure 5: Not relying on domain specific priors enables our
method to reconstruct any deformable object. In this case,
the dog fails to stay still, yet we recover an accurate model.

visualize the degree of movement by showing the difference
in predicted depth as well as by showing a direct plot of the
magnitude of the deformation field at the predicted depth
point.

Domain Agnostic: In Fig. 5, Fig. 14, and Fig. 15. we
show that our method works agnostic of the type of subject.



12
8

12
8

12
8

12
8

12
8

12
8

Figure 6: A diagram of our deformation network. The de-
formation network takes a position encoded position γα(x)
using our coarse-to-fine annealing parameterized by α, along
with a deformation code ω and outputs a deformed position
x′. The architecture is identical for all of our experiments.
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Figure 7: A diagram of the canonical NeRF network. Our
network is identical to the original NeRF MLP, except we
provide an appearance latent code ψ along with the view
direction to allow modulating the appearance as in the NeRF-
A model of [15]. The width W of the network is defined
according to Tab. 2.

E. Additional Implementation Details
Architecture Details: We provide architecture details of the
deformation field network and canonical NeRF networks in
Figures 6 and 7 respectively.
Training: We train our network using the Adam opti-
mizer [10] with a learning rate exponentially decayed by a
factor 0.1 until the maximum number of iterations is reached.
The exact hyper-parameters for each configuration are pro-
vided in Tab. 2.
Background Regularization: Since the total number of
background points varies per scene, we sample 16384 points
for each iteration when computing the background regular-
ization loss in order to avoid memory issues. We additionally
jitter each input point using Gaussian noise ε ∼ N (0, 0.001)
and use a robust Geman-McClure loss function [7] with
α = −2 and c = 0.001 implemented as per Barron [1].

Implementation: We extend the JAX [3] implementation
of NeRF [6] for our method.

F. Experiment Details
F.1. Dataset Processing

Blurry Frame Filtering: For video captures, we filter
blurry frames using the variance of the Laplacian [17]. To
compute the blur score for an image, we apply the Laplace
operator with kernel size 3 and compute the variance of the

resulting image. We then filter the images based on this
score to leave around 600 frames for each capture.
Camera Registration: For camera registration, we first
compute a foreground mask using a semantic segmen-
tation network such as DeepLabV3 [5]. We then use
COLMAP [19] to compute the camera registration while
using the mask to ignore foreground pixels when computing
features. We found that this step can improve the quality
of the camera registration in the presence of a moving fore-
ground. We skip this step for captures for which we cannot
obtain a segmentation mask such as for BADMINTON and
BROOM.
Facial Landmarks: Although not necessary for our method,
we use facial landmarks for selfie and full body captures to
estimate a canonical frame of reference. Using this canoni-
cal frame of reference, we automatically generate visually
appealing novel view trajectories of our reconstructed ner-
fies, like figure-eight camera paths in front of the user. We
compute the 2D facial landmarks using MediaPipe’s face
mesh [13], and triangulate them in 3D using the Structure-
from-Motion camera poses. We then set our canonicalized
coordinate frame that is centered at the facemesh, with a
standard orientation (+y up, +x right, −z into the face),
and with approximately metric units, by setting the scale
so that the distance between the eyes matches the average
interpupillary distance of 6 cm. Note that the 3D triangula-
tion of facial landmarks is only correct if the subject is static,
which is not guaranteed in our method, but in practice we
observed that the triangulation result is sufficiently good to
define the coordinate frame even when the subject rotates
the head side-to-side. For the animal captures, we manually
generate virtual camera paths.

F.2. Baselines

Comparison to Neural Volumes: Neural Volumes [12]
reconstructs a deformable model of a subject captured by
dozens of time-synchronized cameras. To apply it to our
setting, where only one camera sees the subject at each time
instance, we modify the encoder to network to take a single
input image instead of three, as in the original method. We
disable the background estimation branch and learn instead
the complete scene centered around the face and scaled to
a unit cube. For each frame, we render the volume from
the viewpoint of the second camera of the validation rig and
compute image comparison metrics. We provide quantitative
comparisons in Table 1 in the main paper, and qualitative
comparisons in Fig. 14 and Fig. 15.

We use a 1283 voxel grid, a 323 warp field and train the
network for 100k iterations for each of the five sequences.
We evaluate all results using the same camera parameters
and spatial resolution. We show some renderings when inter-
polating the camera position between training and validation
views in the supplementary video.



GLASSES

(78 images)
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PSNR↑ LPIPS↓ PSNR↑ LPIPS↓ PSNR↑ LPIPS↓ PSNR↑ LPIPS↓ PSNR↑ LPIPS↓ PSNR↑ LPIPS↓ PSNR↑ LPIPS↓ PSNR↑ LPIPS↓ PSNR↑ LPIPS↓ PSNR↑ LPIPS↓ PSNR↑ LPIPS↓ PSNR↑ LPIPS↓
NeRF [16] .619 .474 .580 .583 .504 .616 .695 .434 .656 .444 .793 .463 .641 .502 .619 .397 .676 .571 .771 .392 .643 .667 .677 .506
NeRF + latent .695 .463 .687 .535 .619 .539 .746 .403 .735 .386 .798 .385 .713 .452 .855 .233 .800 .404 .850 .308 .688 .576 .798 .380
Neural Volumes [12] .503 .616 .562 .595 .538 .588 .609 .569 .563 .533 .583 .473 .560 .562 .771 .198 .503 .559 .219 .516 .515 .544 .502 .454
NSFF† .599 .490 .606 .483 .458 .569 .762 .394 .673 .343 .825 .391 .654 .445 .918 .175 .672 .363 .649 .368 .577 .357 .704 .316
γ(t) + Trans† [11] .781 .354 .737 .471 .732 .426 .823 .344 .836 .283 .870 .420 .796 .383 .910 .151 .882 .391 .927 .221 .750 .627 .867 .347
Ours (λ = 0.01) .826 .305 .786 .391 .842 .319 .878 .280 .888 .232 .806 .159 .838 .281 .894 .0872 .754 .161 .926 .130 .674 .245 .812 .156
Ours (λ = 0.001) .840 .307 .805 .391 .846 .312 .863 .279 .886 .230 .805 .174 .841 .282 .881 .0962 .731 .175 .922 .132 .605 .270 .785 .168
No elastic .809 .317 .824 .382 .830 .322 .851 .290 .889 .230 .821 .257 .837 .300 .890 .0863 .735 .174 .919 .132 .593 .287 .784 .170
No coarse-to-fine .828 .312 .771 .408 .841 .321 .877 .277 .867 .242 .807 .244 .832 .301 .892 .0960 .763 .257 .912 .151 .695 .406 .815 .228
No SE3 .823 .314 .782 .401 .839 .317 .870 .282 .872 .235 .810 .206 .833 .293 .895 .0867 .715 .191 .899 .156 .599 .276 .777 .177
Ours (base) .828 .319 .737 .456 .818 .345 .829 .323 .851 .254 .792 .184 .809 .314 .894 .127 .768 .298 .894 .173 .695 .503 .813 .275
No BG Loss .779 .317 .758 .395 .696 .371 .844 .290 .806 .260 .775 .145 .776 .296 .893 .0856 .719 .210 .875 .161 .593 .330 .770 .196

Table 1: SSIM and LPIPS metrics on validation captures against baselines and ablations of our system, we color code each
row as best, second best, and third best. Please see the main text for PSNR.

Comparison to NSFF: Concurrently to our work, Neural-
Scene Flow Fields (NSFF) [11] proposes to model dynamic
scenes by directly conditioning the NeRF with a position-
encoded time variable γ(t), modulating color, density, and a
scene-flow prediction. Differences from our method are: (a)
NSFF directly modulates the density of the NeRF by con-
ditioning it with γ(t) while our method uses a deformation
field; (b) NSFF uses a position-encoded time variable (γ(t))
to condition each observation whereas our method uses a
per-example latent code [2]; (c) NSFF uses depth from MI-
DAS [18] and optical flow from RAFT [20] as supervision
whereas our method only uses a photometric loss.

We quantitatively compare with NSFF in Tab. 1 of the
paper and in Tab. 1, and show corresponding qualitative
results in Fig. 14 and Fig. 15. We use the official code
released by the NSFF authors. The authors provided us with
hyper-parameters tuned for our datasets.

Additional Metrics: MS-SSIM metrics are in Tab. 1.

G. Additional Results
We show qualitative results from each of the sequences

presented in our quantitative evaluation (Tab. 1 of paper,
Tab. 1) for quasi-static scenes (Fig. 14) and dynamic scenes
(Fig. 15).

H. Limitations
Topological Variation: Our method struggles when the
scene has motion which varies the topology of the scene.

Config Resolution Steps Learning Batch # Samples Width
Rate Size Fine Coarse W

FULL 1080p 1M 7.5e-4 3072 256 256 256
HALF 540p 100K 1e-3 8096 128 128 128

Table 2: Here we provide the hyper-parameters used for
each configuration. FULL is the full resolution configuration
used in our qualitative results. HALF is half the resolution of
FULL and is used for our quantitative evaluation and ablation
studies.

Figure 8: This concave mask of the Swedish tennis player
Bjorn Borg appears to be convex due to the hollow-face
illusion. By Skagedal, 2004 (Public Domain).

example inputs novel views for same deformation code

Figure 9: If the user’s gaze consistently follows the camera,
the reconstructed nerfie represents the user’s gaze as geome-
try, akin to the Hollow-Face illusion [8]. This is apparent in
the depth map and makes the reconstructed model appear as
if they are looking at the camera even when the geometry is
fixed.

For example, when a person opens their mouth (as in Fig.
11 of the main text), the effective topology of their head
changes. This is problematic for our method since we use
a continuous deformation field parameterized by an MLP.
In order to understand this, consider the mouth example
and suppose that the template contains the person with their
mouth open. Suppose that xU and xL are two adjacent
points near the seam of the lips, and the xU is on the upper



(a) input rgb

(b) rendered rgb
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Figure 10: This example shows Toby the dog moving around
freely, showcasing two limitations of our method. (1) Rapid
motion: Because Toby moves quite fast, the camera only sees
him in certain poses for a short amount of time, resulting in
a sparse set of observations for certain poses. This can make
those poses under-constrained. (2) Orientation flips: Toby
wanders back and forth, showing different sides of his body.
Depending on which orientation Toby is modeled as in the
template, it is difficult for the deformation field to predict a
flipped orientation.

lip and xL is on the lower lip. It is then evident that a
sharp discontinuity in the deformation is required to map
both points to their appropriate positions on the template.
Such a discontinuity is difficult for our continuous MLP to
predict. We find that instead the optimization will often yield
an incorrect but valid solution e.g., it will explain a closing
mouth by protruding the lip and pulling it down as in Figure
11 of the paper.

Rapid Motion: NeRF relies on seeing multiple observa-
tions to constrain where density lies in the volumes. In the
presence of rapid motion, such as in Fig. 10, certain states
of the scene may only be visible for a short period of time
making it harder to reconstruct.

Orientation flips: Optimizations solving for any param-
eterization of rotations are known to be non-convex due to
both Gauge ambiguity and the inherent “twistedness” of the
space of SO(3) [21]. As a simple example to illustrate this,
imagine trying to align two coins in 3D. If the coin is ini-
tialized in a flipped orientation where heads faces the tail
side of the other coin, then the ‘fit’ of the two coins must get
worse before getting better when rotating towards the global

Figure 11: Our 2D toy dataset comprised of an image with
a random translation, a random rotation, and a random non-
linear distortion near the center. Astronaut photo by Robert
Gibson (1984, Public Domain).

minimum.
We encounter the same issue when optimizing for our

deformation fields. If the template of a scene is in a certain
orientation, but the deformation field for an observation is
initialized in the wrong orientation the method will get stuck
in a local minima and result in sub-optimal alignment. We
show an example of this in Fig. 10 where frames with Toby’s
left side visible are reconstructed better than when Toby’s
right side is visible.

Hollow Face Illusion: The hollow-face illusion is an opti-
cal illusion where a concave (pushed in) imprint of an object
appears to be convex (pushed out) instead. A feature of
this illusion is that the convex illusion appears to follow the
viewer’s eye. This illusion has been purposefully used in
the Disneyland haunted mansion to create face busts which
appear to follow you and in the popular T-Rex illusion [4].
We show an example of this illusion in Fig. 8.

We observe that the ambiguity which causes this illusion
can also be a failure more for our method. In Fig. 9, we show
an example where a user fixes their gaze in the direction of
the camera while capturing themselves. Instead of modeling
the eye motion as a deformation, our method models the
eyes concavities as can be seen in the geometry.



R
ec

on
st

ru
ct

io
n

Te
m

pl
at

e
Fl

ow

ground truth SE(2) field translation field

Figure 12: A comparison of our SE(2) field and a translation
field. The translation parameterization has difficulty rotating
groups of distant pixels whereas the rigid transformation
successfully finds the correct orientation.

I. 2D Deformation Experiment
Here we analyze the behavior of a deformation field in a

2D toy setting. In this 2D setting, a "scene" is comprised of a
single image which is randomly translated, rotated, and non-
linearly distorted near the center. We show the full dataset
in Fig. 11. Akin to our deformable NeRF setting, the task is
to reconstruct each image by using a 2D deformation field
which references a single template. The template is an MLP
F : (x, y)→ (r, g, b) which maps normalized image coordi-
nates x, y ∈ [−1, 1] to color values. The deformation field
(i.e., 2D flow) is represented as an MLP T : (x, y)→ (tx, ty)
for a translation field or T : (x, y)→ (θ, px, py, tx, ty) for a
rigid SE(2) transformation field. These are 2D analogs to the
3D translation field and SE(3) field described in Sec. 3.2.

Deformation Formulation: Fig. 12 shows how an SE(2)
rigid transformation field outperforms a translation field. An
SE(2) field is able to faithfully reconstruct each image with
a reasonable template and smooth deformation field. On
the other hand, a translation field is not able to recover a
reasonable template, and as a result the reconstruction has
many artifacts and the flow field is messy.

Positional Encoding Frequencies: We show how chang-
ing the number of frequency bands changes the convergence
behavior in Fig. 13. With a small number of frequencies
(m = 1) we are able to converge to the correct orientation
in the template, but cannot fully model the non-linear ‘swirl’
towards the center of the image. If we increase the number of

frequencies (m = 2 . . . 6) then while we can reconstruct the
high swirl better, we start introducing artifacts due to early
overfitting of the template and deformation field. With our
coarse-to-fine approach we are able to both get the correct
orientation without artifacts and also model the swirl.
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Figure 13: We show how the optimization changes depending on the number of frequency bands in the positional encoding of
the deformation field. With 1 frequency, the model find the correct orientation of all images but is unable to model the high
frequency distortion near the center. If we increase the frequencies then the templates overfits early and gets stuck in bad local
minima. With our coarse-to-fine technique we are less prone to local minima while also modeling high frequency details.
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Figure 14: Comparisons of baselines and our method on quasi-static scenes. PSNR / LPIPS metrics on bottom right with best
colored red.
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Figure 15: Comparisons of baselines and our method on dynamic scenes. PSNR / LPIPS metrics on bottom right with best
colored red.
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