

Appendix: Reliably fast adversarial training via latent adversarial perturbation

Geon Yeong Park Sang Wan Lee
 KAIST
 Daejeon, South Korea
 {pky3436, sangwan}@kaist.ac.kr

This supplementary material is organized as follows. In section 1, we present the proof for Proposition 1, which is obtained by modifying [2], for completeness. Optimization setting and hyperparameter configurations are presented in section 2.

1. Proof

Proposition 1. Consider an L layer neural network, with the latent adversarial perturbations $\delta_k(x)$ being applied at each layer $k \in K$. Assuming the Hessians, of the form $\nabla^2 h_l(x)|_{h_m(x)}$ where l, m are the index over layers, are finite. Then the perturbation accumulated at the layer $L - 1$, $\hat{\delta}_{L-1}(x)$, is approximated by:

$$\hat{\delta}_{L-1}(x) = \sum_{k \in K} \mathbf{J}_k(x) \delta_k(x) + O(\gamma), \quad (1)$$

where $\mathbf{J}_k(x) \in \mathbb{R}^{N_{L-1} \times N_k}$ represents each layer's Jacobian; $\mathbf{J}_k(x)_{i,j} = \frac{\partial h_{L-1}(x)_i}{\partial h_k(x)_j}$, given the number of neurons in layer $L - 1$ and k as N_{L-1} and N_k , respectively. $O(\gamma)$ represents higher order terms in δ that tend to zero in the limit of small perturbation.

Proof. Starting with layer 0 as the input layer, the accumulated perturbation on a layer $L - 1$ can be approximated through recursion. Following the conventional adversarial training, suppose that the first layer index 0 is included in the set K . At layer 0, we apply Taylor's theorem on $h_1(x + \delta_0(x))$ around the original input x . If we assume that all values in Hessian of $h_1(x)$ is finite, i.e., $|\partial^2 h_1(x)_i / \partial x_j x_k| < \infty, \forall i, j, k$, the following approximation holds:

$$h_1(x + \delta_0(x)) = h_1(x) + \frac{\partial h_1(x)}{\partial x} \delta_0(x) + O(\kappa_0), \quad (2)$$

where $O(\kappa_0)$ represents asymptotically dominated higher order terms given the small perturbation. By accommodating $L = 2$ as a special case, we obtain the accumulated noise $\hat{\delta}_{L-1} = \frac{\partial h_1(x)}{\partial x} \delta_0(x) + O(\kappa_0)$. Note that (2) can be generalized with an arbitrary layer index $k + 1$ and perturbation $\delta_k(x)$.

Repeating this process for each layer $k \in K$ recursively, and assuming that all Hessians of the form $\nabla^2 h_l(x)|_{h_m(x)}, \forall m < l$ are finite, we obtain the accumulated perturbation for a layer $L - 1$ as follows:

$$\hat{\delta}_{L-1}(x) = \sum_{k \in K} \frac{\partial h_{L-1}(x)}{\partial h_k(x)} \delta_k(x) + O(\gamma), \quad (3)$$

where $O(\gamma)$ represents asymptotically dominated higher order terms as the perturbation $\delta_k(x), \forall k \in K$ is sufficiently small. Denoting $\frac{\partial h_{L-1}(x)}{\partial h_k(x)}$ as the Jacobian $\mathbf{J}_k(x) \in \mathbb{R}^{N_{L-1} \times N_k}$ completes the proof. \square

2. Experimental setup

We provide extended details about simulation settings for completeness. For a fair comparison, we reproduced all the other baseline results using the same back-bone architecture and the optimization settings. Every method is trained for 30 epochs except Free-AT [3] which is trained for 72 epochs to get results comparable to the other methods. Following the setup of [1], we use cyclic learning rates [4] with the SGD optimizer with momentum 0.9 and weight decay $5 * 10^{-4}$. Specifically, the learning rate increases linearly from 0 to 0.2 in first 12 epochs, and then decreases linearly to 0 in left 18 epochs. We use a batch size of 128 for CIFAR-10 and CIFAR-100 experiments. For the Tiny ImageNet experiments, we use a batch size of 64 to reduce the memory consumption.

For FGSM-RS [5] on every dataset, we use a step size $\alpha = 1.25\eta_0$ following the recommendation of authors. We succeeded in reproducing the robust accuracy of FGSM-RS against PGD-50-10 attack using the experimental setup reported in [5], but found that catastrophic overfitting occurs when the epoch was increased to 30. For PGD-7 AT, we use a step size $\alpha = 2\eta_0/10$ for generating a 7-step PGD adversarial attack sample.

References

- [1] Maksym Andriushchenko and Nicolas Flammarion. Understanding and improving fast adversarial training. *Advances in*

Neural Information Processing Systems, 33, 2020. 1

- [2] Alexander Camuto, Matthew Willetts, Umut Şimşekli, Stephen Roberts, and Chris Holmes. Explicit regularisation in gaussian noise injections. *arXiv preprint arXiv:2007.07368*, 2020. 1
- [3] Ali Shafahi, Mahyar Najibi, Mohammad Amin Ghiasi, Zheng Xu, John Dickerson, Christoph Studer, Larry S Davis, Gavin Taylor, and Tom Goldstein. Adversarial training for free! In *Advances in Neural Information Processing Systems*, pages 3358–3369, 2019. 1
- [4] Leslie N Smith and Nicholay Topin. Super-convergence: Very fast training of neural networks using large learning rates. In *Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications*, volume 11006, page 1100612. International Society for Optics and Photonics, 2019. 1
- [5] Eric Wong, Leslie Rice, and J Zico Kolter. Fast is better than free: Revisiting adversarial training. *arXiv preprint arXiv:2001.03994*, 2020. 1