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Figure 11. Comparing our mapper architecture with a simpler ar-
chitecture that uses a single mapping network. The simpler map-
per fails to infer multiple changes correctly. The changes in the
expression and in the hair-style are not strong enough to capture
the identity of the target individual. On the other hand, there are
unnecessary changes in the background color in the second row
when using a single network.

9. Latent Mapper — Ablation Study

In this section, we study the importance of various
choices in the design of our latent mapper (Section 5).

9.1. Architecture

The architecture of the mapper is rather simple and with
relatively small number of parameters. Moreover, it has
negligible effect on the inference time. Yet, it is natural to
compare the presented architecture, which consists of three
different mapping networks, to an architecture with a sin-
gle mapping network. Intuitively, using a separate network
for each group of style vector entries should better enable
changes at several different levels of detail in the image.
Indeed, we find that with driving text that requires such
changes, e.g. “Donald Trump”, a single mapping network
does not yield results that are as effective as those produced
with three. An example is shown in Figure 11.
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Figure 12. Removing M7 from our full architecture for edits
which do not require color scheme manipulation yields slightly
better results.

Although the full, three network mapper, gives better re-
sults for some driving texts, as mentioned in Section 5, we
note that not all the three are needed when the manipula-
tion should not affect some attributes. For example, for the
hairstyle edits shown in Figure 5, the manipulation should
not affect the color scheme of the image. Therefore, we
perform these edits when training M ¢ and M™ only, that
is, My(w) = (M (we), M (W, ),0). We show a compar-
ison in Figure 12. As can be seen, by removing M from
the architecture, we get slightly better results. Therefore,
for the sake of simplicity and generalization of the method,
we chose to describe the method with all three networks.
In the main paper, the results shown were obtained with all
three networks, while here we also show results with only
two (without Mp).

9.2. Losses

CLIP Loss To show the uniqueness of using a “celeb
edit” with CLIP, we perform the following experiment. In-
stead of using the CLIP loss, we use the identity loss with
respect to a single image of the desired celeb. Specifically,
we perform this experiment by using an image of Beyonce.
The results are shown in Figure 13. As can be seen, CLIP
guides the mapper to perform a unique edit which cannot be
achieved by simply using a facial recognition network.



Input ID Loss CLIP Loss
Figure 13. Replacing the CLIP loss with identity loss for the Bey-
once edit. The identity loss is computed with respect to an image
of Beyonce.
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Figure 14. Identity loss ablation study. Under each column we
specify (Ar2, Aip). In the second and the third columns we did not
use the identity loss. As can be seen, the identity of individual in
the input image is not preserved.

ID Loss Here we show that the identity loss is significant
for preserving the identity of the person in the input image.
When using the default parameter setting of A\;, = 0.8 with
Aip = 0 (i.e., no identity loss), we observe that the mapper
fails to preserve the identity, and introduces large changes.
Therefore, we also experiment with A\, = 1.6, however,
this still does not preserve the original identity well enough.
The results are shown in Figure 14.

10. Working in Different Latent Spaces

In this section, we compare the optimization and latent
mapper methods applied in different latent spaces. Specifi-
cally, in addition to the results shown previously, where the
methods were applied in YW+, here we apply these methods
in the StyleSpace, S [10].

Optimization Here, instead of optimizing the latent vec-
tor w € W+, we optimize the latent vector in S. We op-
timize the exact same expression, where instead of using
w, we use s € S. We found that optimizing all of the di-
mensions of & does not yield good results. Thus, we do
not optimize the style vectors which are fed into the tRGB
layers. We refer the reader to Wu et al. [10] for more de-
tails about S space. The results of the three configurations
are shown in Figure 15. The results obtained with S when
not optimizing the tRGB style vectors, and the results ob-
tained with YW+ are quite similar. However, we noted that
the optimization in S is somewhat more disentangled, as
can be seen in the “beard” example. However, this disen-
tanglement comes with a cost. In S, we find it harder to
perform more global changes, as can be seen in the “Elsa”
and “Trump” examples.

Latent Mapper We now turn to study the performance
of the latent mapper applied in S. As demonstrated for the
optimization method, changing the style parameters that are
fed into the tRGB layers does not contribute to changing se-
mantic attributes of the image. Therefore, the mapper does
not change these style vectors, and they are left intact. We
also note that the different style vectors are produced by
different learned affine transformations and therefore it is
natural to to define a different mapper for each style vector.
The latent mapper that operates in S is therefore defined by
16 different networks, each of which yields a displacement
for a single style vector (which is not fed into the tRGB lay-
ers). In Figure 16, we compare the results obtained by the
mapper that operates in S to those obtained by the mapper
that operates in YW+. As can be seen, although S is more
disentangled than YW+ the results are similar.

11. Additional Results

In this section we provide additional results to those pre-
sented in the paper. Specifically, we begin with a variety
of image manipulations obtained using our latent mapper.
All manipulated images are taken from the CelebA-HQ and
were inverted by ede [9].

1. In Figure 17 we show a large gallery of hair style ma-
nipulations.

2. In Figures 18 and 19 we show “celeb” edits, where the



Input “Beyonce” “A woman “Elsa from
without Frozen”
makeup”
_l’_
=
(0.004, 0) (0.008, 0.005) (0.004, 0)
e}
1=
<
&
12)
(0.0008, 0) (0.0012, 0.005)  (0.0008, 0)
12
(0.0008, 0) (0.0012, 0.005)  (0.0008, 0)
Input “A man witha “A blonde man” “Donald Trump”
beard”
+
=
(0.008, 0.005)  (0.008, 0.005) (0.0025, 0)
e}
3
S
%)
(0.0012, 0.005) (0.0012,0.005)  (0.00025, 0)
1)
(0.0012, 0.005) (0.0012,0.005)  (0.00025, 0)

Figure 15. Comparison of optimization in different latent spaces.
We show optimization in YW+, in S, and in S when not using the
style vectors that go to the tRGB layers, denoted by S (partial).

input image is manipulated to resemble a certain target
celebrity.

3. In Figure 20 we show a variety of expression edits.

Next, Figure 21 shows a variety of edits on non-face
datasets, performed along text-driven global latent manip-
ulation directions (Section 6).

Figure 22 shows image manipulations driven by the
prompt “a photo of a male face” for different manipulation
strengths and disentanglement thresholds. Moving along
the global direction, causes the facial features to become
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Input “Mohawk  “Curly hair”  “Bob-cut “Afro
hairstyle” hairstyle”  hairstyle”
Figure 16. Comparison of the latent mapper in different latent
spaces. For W+ we trained a mapper which consists of 3 net-
works: M€, M™, M, and for S we trained a mapper which con-
sists of 16 networks for the style vectors that are not inserted into
the tRGB layers.

more masculine, while steps in the opposite direction yields
more feminine features. The effect becomes stronger as the
strength « increases. When the disentanglement threshold
£ is high, only the facial features are affected, and as [ is
lowered, additional correlated attributes, such as hair length
and facial hair are affected as well.

In Figure 23, we show another comparison between our
global direction method and several state-of-the-art Style-
GAN image manipulation methods: GANSpace [4], Inter-
FaceGAN [8], and StyleSpace [10]. The comparison only
examines the attributes which all of the compared methods
are able to manipulate (Gender, Grey hair, and Lipstick),
and thus it does not include the many novel manipulations
enabled by our approach. Following Wu et al. [10], the
manipulation step strength is chosen such that it induces
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Figure 17. Hair style manipulations obtained by the latent mapper. Except for the purple hair, all mappers were trained without M 7.



Input Taylor Swift Beyonce Hillary Clinton
Figure 18. Celeb edits performed by the latent mapper.

Input Trump Mark Zuckerberg Johnny Depp
Figure 19. Celeb edits performed by the latent mapper.

the same amount of change in the logit value of the cor-
responding classifiers (pretrained on CelebA). It may be
seen that in GANSpace [4] manipulation is entangled with
skin color and lighting, while in InterFaceGAN [§] the iden-
tity may change significantly (when manipulating Lipstick).
Our manipulation is very similar to StyleSpace [10], which
only changes the target attribute, while all other attributes
remain the same.

Figure 24 show additional edits along global text-
driven manipulation directions, demonstrated on portraits
of celebrities. Edits are performed using StyleGAN2 pre-
trained on FFHQ [6]. The inputs are real images, embedded
in W+ space using the e4e encoder [9].

Figure 25 shows a comparison between StyleFlow [1]

Input Surprised Angry
Figure 20. Expression edits performed by the latent mapper.



and our global directions method. It may be seen that our
method is able to produce results of comparable visual qual-
ity, despite the fact that StyleFlow requires the simultaneous
use of several attribute classifiers and regressors (from the
Microsoft face API), and is thus able to manipulate a lim-
ited set of attributes. In contrast, our method required no
extra supervision to produce these and all of the other ma-
nipulations demonstrated in this work.

Figure 26 shows an additional comparison between text-
driven manipulation using our global directions method and
our latent mapper. Our observations are similar to the ones
we made regarding Figure 10 in the main paper.

Finally, Figure 27 demonstrates that drastic manipu-
lations in visually diverse datasets are sometimes diffi-
cult to achieve using our global directions. Here we use
StyleGAN-ada [5] pretrained on AFHQ wild [2], which
contains wolves, lions, tigers and foxes. There is a smaller
domain gap between tigers and lions, which mainly involves
color and texture transformations. However, there is a larger
domain gap between tigers and wolves, which, in addition
to color and texture transformations, also involves more
drastic shape deformations. This figure demonstrates that
our global directions method is more successful in trans-
forming tigers into lions, while failing in some cases to
transform tigers to wolves.

12. Video

We show examples of interactive text-driven image ma-
nipulation in our supplementary video. We use a simple
heuristic method to determine the initial disentanglement
threshold (3). The threshold is chosen such that k£ channels
will be active. For real face manipulation, we set the initial
strength to o = 3 and the disentanglement threshold so that
k = 20. For real car manipulation, we set the initial values
to a = 3 and k = 100. For generated cat manipulation, we
set the initial values to & = 7 and k£ = 100.

13. Limitations

Our methods rely on a well trained disentangled Style-
GAN?2 [7] model. Such models shine on datasets of aligned
images, where the main object is in the center of the im-
age, such as FFHQ [6] or AHFQ [2]. But they perform
less admirably on more general images, which may depict
more complex scenes with multiple objects spread across
the image, such as images from the LSUN bedrooms [1 1] or
Cityscape [3] datasets. Figure 28 shows several text-driven
manipulations using a StyleGAN2 [7] model pretrained on
LSUN bedrooms [ 1] using our global directions method. It
may be seen that while text-driven manipulation is possible
in this model, the results are somewhat entangled.
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Figure 21. A variety of edits for non-face images along text-driven global latent manipulation directions. Left: using StyleGAN2-ada [5]
pretrained on AFHQ cats [2]. Right: using StyleGAN?2 pretrained on LSUN Church [11]. The target attribute used in the text prompt is
indicated above each column.
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Figure 22. We demonstrate gender manipulation (driven by the prompt “a photo of a male face”) for different manipulation strengths and
disentanglement thresholds. Moving along the global direction, causes the facial features to become more masculine, while steps in the
opposite direction yields more feminine features. The effect becomes stronger as the strength « increases. When the disentanglement
threshold S is high, only the facial features are affected, and as [ is lowered, additional correlated attributes, such as hair length and facial
hair are affected as well.
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Figure 23. Comparison with state-of-the-art methods using the same amount of manipulation according to a pretrained attribute classifier.
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Figure 24. A variety of edits along global text-driven manipulation directions, demonstrated on portraits of celebrities. Edits are performed
using StyleGAN2 pretrained on FFHQ [0]. The inputs are real images, embedded in YW+ space using the e4e encoder [9]. The target
driving text is indicated above each column.



Original Beard Glasses Bald

Global

StyleFlow

Global

StyleFlow

Figure 25. Comparison between StyleFlow [ 1] and our global directions. Our method produces results of similar quality, despite the fact
that StyleFlow simultaneously uses several attribute classifiers and regressors (from the Microsoft face API), and is thus able to manipulate
a limited set of attributes. In contrast, our method requires no extra supervision.
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Figure 26. We compare our global directions with our latent mapper using three different kinds of attributes.
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Figure 27. Drastic manipulations in visually diverse datasets are sometimes difficult to achieve using our global directions. Here we use
StyleGAN-ada [5] pretrained on AFHQ wild [2], which contains wolves, lions, tigers and foxes. There is a smaller domain gap between
tigers and lions, which mainly involves color and texture transformations. However, there is a larger domain gap between tigers and wolves,
which, in addition to color and texture transformations, also involves more drastic shape deformations. This figure demonstrates that our
global directions method is more successful in transforming tigers into lions, while failing in some cases to transform tigers to wolves. The
“+” and “++” indicate medium and strong manipulation strength, respectively.
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Figure 28. The LSUN Bedroom dataset contains various viewpoints, distances to camera, and bedroom styles. The StyleGAN trained on
this dataset lends itself to manipulation using our global directions method, but the manipulations exhibit some entanglement.



