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In this document, we provide additional analysis of our
method MetaUVFS both qualitatively and quantitatively.
We include details and analysis that was ready at the time
of submission but could not be included in the paper due to
space constraints. We also provide a list of classes that were
explicitly removed from the large-scale unlabeled video
dataset used for training our model.

1. Additional Implementation Details
We use Pytorch (v1.7) as the deep learning framework.

We make use of the Pytorch Distributed Training package,
torch.distributed, for our distributed training jobs
that uses NCCL v2.7.8 as the communications library. For
large-scale dataset training, our model takes close to an hour
per epoch when run on 64 GPUs in parallel in a distributed
setting. We set the support and query samples to be 1 for
the few-shot meta-training phase. We use learn2learn [1] li-
brary to conduct our few-shot experiments with MAML [3].
We use second-order gradients for our MAML training (ab-
lation shown later for using first-order approximation of
MAML).

2. Action-Appearance Alignment Visualiza-
tion: Novel Classes

To qualitatively evaluate the effectiveness of the Action-
Appearance Aligned Meta-adaptation (A3M) module of
MetaUVFS, we sample a few support-query pairs of
novel class videos for Kinetics100, UCF101 and HMDB51
dataset. We visualize the action-appearance aligned masked
frames of the video pairs based on the input frames fed to
the 3D action and 2D appearance encoders. The action-
appearance aligned masked frames refer to the frames fed
to the 2D appearance encoder that have been overlayed with
the weighted attention scores as a mask computed by the
A3M module based on the action and appearance encoder
embeddings. Figure 1 illustrates the videos and their cor-
responding action-appearance aligned masked frames. The
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support video samples are on the left and query video sam-
ples are on the right. For each video sample, there are
three rows of frames. The top row provides the 4 × 4 sam-
pled frames for the 3D action encoder at 112 × 112 res-
olution, referred to as Action Input (Fig. 6). The middle
row provides the 1 × 8 sampled frames for the 2D appear-
ance encoder at 224×224 resolution, referred to as Appear-
ance Input (Fig. 6). The bottom row provides the Action-
Appearance Aligned Masked Frames as described above.
The weighted frames embeddings from the A3M module
are then aggregated to generate the final action-appearance
aligned video embedding for few-shot video action recog-
nition.

From each video sample shown in Figure 1, we can ob-
serve that the attention mask from A3M is able to effec-
tively focus on the frames that are most representative of the
correct action in relation to the spatial 2D appearance em-
beddings and spatio-temporal 3D action embeddings. For
instance, for the second video (UCF101, Still Rings), the
A3M module learns to focus on the frames that show the
characteristic pose of a person as part of Still Rings. There
are frames where the person is standing with normal stance
and can be ambiguous in deducing the correct action. The
A3M module learns to mask these ambiguous frames so
that it can learn to correctly predict the action using as
few as 1 support example. Similarly, for the fourth video
(HMDB51, Kick), the A3M module learns to focus on the
frames demonstrating the ‘Kick’ action and masks the rest
of the frames where the person might be just standing in a
certain pose. Another key observation is that the frame may
not be contiguous and A3M can decide to focus on any arbi-
trary set of frames based on the most representative action-
oriented frames (e.g., query video for HMDB51, Kick and
query video for Kinetics100, Cutting Watermelon).

3. Nearest Neighbor Retrieval: Novel Classes

As illustrated in Figure 2, we perform a qualitative anal-
ysis of our approach MetaUVFS by retrieving and visualiz-
ing the top 1, 3, and 5 nearest neighbors (right side) for a
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Figure 1. Support-Query novel class videos highlighting the Action-Appearance Aligned Masked Frames. For each video, support sample
is on the Left and query sample is on the Right. For each video, there are three rows: 4 × 4, 112 × 112 frames as Action Input fed to
3D action encoder (top), 1 × 8, 224 × 224 frames as Appearance Input fed to 2D appearance encoder (middle), and Action-Appearance
Aligned Masked Frames (bottom) where the Appearance Input is overlayed with the weighted attention mask from Action-Appearance
Aligned Meta-adaptation (A3M) module of MetaUVFS based on Action and Appearance Input. We can observe that A3M module learns
to effectively focus on the frames most representative of the action in as few as 1 support sample. For e.g., in the first video (UCF101,
Blowing Candles), A3M module effectively puts high attention on the frames illustrating the person blowing the candle and masking out
the frames where the person is just standing in the anticipation of blowing the candles. Similarly, in the third video (HMDB51, Smoke),
the A3M module learns to focus on the frames where the person is taking a drag on the cigarette and masks out the other frames.

query video (left side) belonging to the novel classes. The
nearest neighbors are obtained by comparing pair-wise co-
sine distances of the novel class action-appearance aligned
video feature embeddings. We can observe that for UCF101
and Kinetics100 dataset, our model is able to accurately
retrieve the videos of the same class as the query video.

For the novel classes in the HMDB51 dataset, many of
the videos belonging to a class actually belong to the same
video source. Hence, in our illustration, the top-1 and top-3
retrieved videos are almost identical. Additionally, a failure
case, highlighted in a red dashed-line box, occurs because
the query video of class ‘Kick’ and the falsely-retrieved



video of class ‘Run’ belong to the same video source ‘The
Matrix’ (potentially a bias towards the same video source).

4. Further Ablation
4.1. Effectiveness of large-scale unlabeled data

To demonstrate the effectiveness of performing unsuper-
vised training on a large-scale unlabeled video dataset, we
conduct a set of experiments where we train our method
MetaUVFS only on the base class dataset splits of the three
few-shot benchmark datasets – UCF101, HMDB51, and Ki-
netics100. In these experiments, we consider the base class
videos to be unlabeled without ground truth annotations.

Tabel 1 summarizes the results of this study. For compar-
ison, we also show the few-shot performance on CVRL [5]
which is the best-performing baseline for unsupervised
video representation learning. From the table, we can ob-
serve that the performance of our approach MetaUVFS,
meta-trained on a large-scale unlabeled video dataset, is
higher by at least 10% on 1-shot experiments and by at
least 7% on 5-shot experiments compared to the perfor-
mance when trained on individual base class splits. A sim-
ilar trend can also be observed for CVRL which is the best
performing unsupervised baseline. This large performance
improvement can be attributed to the fact that unsupervised
methods tend to learn better feature representations when
subjected to large amounts of data. Another observation
is that in both scenarios of training with either large-scale
data or individual base class splits, our method MetaU-
VFS is able to significantly outperform CVRL across all
few-shot experiments. This further highlights the impor-
tance of aligning action and appearance-based representa-
tions and having a specialized few-shot meta-learner, that
induces a downstream few-shot task-specific prior on the
model, to enhance few-shot performance.

4.2. Different backbones for 3D Action Encoder

To validate our choice of using ResNet50-3D in MetaU-
VFS, we train our method using different 3D CNN archi-
tectures (C3D [6], S3D [8] and R(2+1)D [7]) as the 3D
action encoder in our model. Table 2 shows the compar-
ison of the few-shot performance across the different 3D
action encoders. We can observe from the table that across
all few-shot settings, ResNet50-3D is able to perform the
best among all the 3D CNN architectures considered. This
justifies our choice of using ResNet50-3D in MetaUVFS.
For R(2+1)D, we choose a 34-layer architecture that has
larger number of parameters than our chosen ResNet50-3D
architecture. On the other hand, C3D and S3D have rela-
tively fewer number of parameters compared to ResNet50-
3D. Since the few-shot performance is not correlated to the
number of parameters in the 3D encoder, we believe that
the higher performance of ResNet50-3D compared to oth-

ers is due to the inherent network design and inductive bias
of ResNet50-3D that enables it to learn more generalizable
features over the given data distribution.

4.3. Learning Rate Analysis

As our few-shot meta-testing involves finetuning follow-
ing MAML [3] protocol, we observe that the learning rate
and the number of steps to train the classifier on support
samples are fundamental to achieving the optimal perfor-
mance. Figure 3 provides insights into the effect of dif-
ferent learning rates and the number of steps to fine-tune
have on the few-shot performance. Note that since we use
l2-normalized representation as the input to the classifier,
higher learning rates such as 1 or 10 can be used for faster
convergence. However, very high learning rates such as 100
can lead to overfitting and reduced performance.

4.4. Comparison with using First-Order approxi-
mation of MAML (FOMAML)

We also conduct an experiment where we meta-train
our method using First-Order approximation of MAML
(also known as FOMAML [3]). On evaluating on Kinet-
ics100 few-shot benchmark, we obtain 62.05 ± 0.46 and
78.61 ± 0.40 on 5-way, 1-shot and 5-way, 5-shot few-
shot settings respectively. This is lower than using MAML
with second-order gradients that achieves 62.80± 0.45 and
79.55± 0.39 on 5-way, 1-shot and 5-shot few-shot settings
for Kinetics100 respectively. We conclude that, empirically,
using MAML with second-order gradients helps to achieve
the best performance compared to FOMAML and the rest
of the baseline meta-learning algorithms (Table 4, main pa-
per).

5. Spatio-temporal frame sampling and aug-
mentation

Figure 6 illustrates the spatio-temporal frame sampling
strategy we employ in MetaUVFS to maximize the down-
stream few-shot performance. For an input video, the 2D
appearance stream encodes 8 input frames where 1 frame
is randomly sampled from each of 8 segments equally-
partitioned along the video length at 224 × 224 resolu-
tion (8 × 1). For the 3D-action stream, we randomly
sample 4 clips across 4 equidistant segments of the video
to form a 16 frame input at a lower frame resolution of
112× 112 (4× 4).

6. T-SNE Visualization of Few-Shot Tasks
We visualize the action-appearance aligned feature rep-

resentations of MetaUVFS on the 5-way and 10-way setting
using T-SNE [4] as shown in Figure 4. For 5-way, we ran-
domly sample 5 classes and encode all videos belonging to
these 5 classes and then obtain the T-SNE plots. Similarly,
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Figure 2. Nearest neighbor retrieval results with our unsupervised MetaUVFS action-appearance aligned video representations trained on
our large unlabeled dataset. On the left side is a query video sampled from the novel classes in the UCF101, Kinetics100, and HMDB51
few-shot datasets. On the right side, we show among the top-5, i.e. the 1st, 3rd and 5th, nearest neighbors retrieved from the corresponding
novel class dataset. The action class label for each video is shown in the upper right corner. The dashed-line box in red (bottom-most row)
shows the model falsely retrieving another class ‘run’ due to query ‘Kick’ belonging to the same movie ‘The Matrix’.

UCF101 (unlabeled) HMDB51 (unlabeled) Kinetics100 (unlabeled)
Base Class + large unlabeled Base Class + large unlabeled Base Class + large unlabeled

Methods 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot
CVRL [5] 53.46 ± 0.46 75.41 ± 0.40 63.00 ± 0.41 87.80 ± 0.30 27.45 ± 0.38 30.91 ± 0.36 44.21 ± 0.45 60.35 ± 0.45 43.00 ± 0.41 58.35 ± 0.43 53.26 ± 0.48 71.39 ± 0.44

MetaUVFS (Ours) 65.31 ± 0.39 85.26 ± 0.47 76.38 ± 0.40 92.50 ± 0.24 36.72 ± 0.34 51.43 ± 0.45 47.55 ± 0.45 66.13 ± 0.33 50.28 ± 0.47 65.92 ± 0.44 62.80 ± 0.45 79.55 ± 0.39

Table 1. Efficacy of acquiring and training on large unlabeled video dataset. We compare the 1 and 5 shot 5-way performance of
training models individually on ‘Base Class’ videos and in addition with the ‘large-unlabeled’ video dataset (total ∼550K videos). We
compare our method against CVRL [5] which is the best-performing unsupervised baseline method. Unsupervised training on large-
scale unlabeled dataset outperforms training on just base class video by a significant margin. For both data scenarios, MetaUVFS also
significantly outperforms state-of-the-art CVRL that highlights the significance of having action-appearance aligned representations and
an explicit few-shot learner to meta-learn from unlabeled videos.

we do this for the 10-way setting. As the 10-way task is
expectedly harder than the 5-way task, 10-way T-SNE plots
for both Kinetics100 and UCF101 look more scattered and
mixed than for the 5-way task. The clusters formed for
UCF101 look more compact and distinct as compared to

Kinetics100. This observation is consistent with our quan-
titative analysis where the few-shot performance of MetaU-
VFS on UCF101 is higher than Kinetics100. Kinetics100
is also a relatively harder dataset than UCF101 as it is less
constrained in terms of overall background setting and the



3D Action Encoder Params UCF101 HMDB51 Kinetics100
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

S3D [8] 9.6M 66.09 ± 0.46 88.42 ± 0.31 40.92 ± 0.47 61.03 ± 0.46 54.83 ± 0.48 73.64 ± 0.42
C3D [6] 27.7M 72.00 ± 0.42 90.88 ± 0.27 43.51 ± 0.47 63.70 ± 0.46 58.52 ± 0.46 76.93 ± 0.40
R(2+1)D-34 [7] 64.0M 67.06 ± 0.45 89.06 ± 0.30 41.51 ± 0.46 61.72 ± 0.46 55.63 ± 0.47 74.09 ± 0.42
Resnet50-3D (Ours) 44.5M 76.38 ± 0.40 92.50 ± 0.24 47.55 ± 0.45 66.13 ± 0.33 62.80 ± 0.45 79.55 ± 0.39

Table 2. Ablation study of MetaUVFS highlighting the choice of using ResNet-3D-50 as the 3D Action encoder compared to contemporary
3D architecture designs used by previous methods. ResNet-3D-50 is able to outperform all other backbones across all few-shot benchmarks.

Figure 3. Comparison of accuracy for 1-shot, 5-way task on Ki-
netics100 for finetuning with different learning rate and number of
steps.

temporal positioning of the action in the videos.

7. Videos for Unsupervised Hard Episode Gen-
eration

Our sampling and augmentation scheme prepare vari-
ous augmentations for the same video as input to the action
and appearance streams. Some augmentations are relatively
harder (cosine distance similarity) for the InfoNCE discrim-
inative learning. Figure 5 shows examples of ‘hard’ ac-
tion and appearance augmentations drawn from unlabelled
video samples. These augmented videos are sampled for
generating episodes in our meta-learning A3M module.

8. Class splits
This section provides the list of classes whose videos

were used for unsupervised training that comprises our
‘large unlabeled video data’. These unlabeled videos are
acquired from Kinetics700 [2], base classes videos from
UCF101 and HMDB51 [9], and Kinetic100 [10]. We take
extra precautions to ensure that there is no video in the train-
ing dataset belonging to the union of all the novel classes
across all three evaluation datasets. This is to ensure that
our testing is truly on a disjoint set of unseen classes.

8.1. Class Removal for Kinetics700

We remove the following 58 classes from Kinetics700
dataset:
blasting sand, busking, clean and jerk, cutting watermelon,
dancing ballet, dancing charleston, dancing macarena, div-
ing cliff, fencing (sport), filling eyebrows, folding paper,

gymnastics tumbling, high jump, high kick, hula hooping,
hurling (sport), ice skating, kicking field goal, kicking soc-
cer ball, paragliding, playing drums, playing kickball, play-
ing monopoly, playing tennis, playing trumpet, playing vol-
leyball, pouring beer, pouring milk, pouring wine, punching
bag, punching person (boxing), push up, pushing car, riding
elephant, riding or walking with horse, rock climbing, run-
ning on treadmill, salsa dancing, shearing sheep, side kick,
ski ballet, ski jumping, skiing crosscountry, skiing mono,
skiing slalom, skipping rope, skydiving, smoking, smok-
ing hookah, smoking pipe, springboard diving, standing on
hands, stretching arm, surfing water, talking on cell phone,
tap dancing, throwing axe, unboxing.

8.2. Class Removal for UCF101

We remove 4 base classes from UCF101 split:
Drumming, PushUps, Fencing, WallPushups.

8.3. Class Removal for HMDB51

We remove 4 base classes from HMDB51 split:
punch, handstand, push, throw

8.4. Class Removal for Kinetics100

We remove 1 base classes from Kinetics100 split:
blowing candles



5-way 10-way

5-Way                                                                      10-Way

   
  K

in
et

ic
s1

00
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

 U
C

F1
01

Figure 4. T-SNE plot for randomly chosen 5-way and 10-way settings on novel classes for UCF101 and Kinetics100 dataset. The clusters
formed for UCF101 are more compact and well-separated than Kinetic100. This is consistent with the observation that the few-shot
performance of MetaUVFS on UCF101 is higher than on Kinetics100.
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Figure 5. Figure showing some videos that are sampled to generate hard episodes to meta-train A3M module in MetaUVFS. For each
video, top row shows original video frames. Next two rows show the frames comprising of the augmentations fed to the 2D appearance
encoder. After that, the next two rows show the frames comprising of the augmentations fed to the 3D action encoder. For easy viewing
in this figure, the action augmentations are shown with 8 frames, picking every other of the 16 frames, and resized to be the same size
as appearance augmentations. Under each video is the label for the video from Kinetics700 dataset. Labels are not used when training
MetaUVFS in an unsupervised manner.
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