
A. Appendix
A.1. Foundations of compositional contrastive

learning
In this section, we develop more formally a basic theory

of compositional contrastive learning formulation, providing
rigorous grounds for the approach described in Sec. 3.

Consider the problem of learning a function f : X ! Y .
In a contrastive setting, we are not given information about
the values of f ; instead, we are given a contrast function
c : X ⇥ X ! {0, 1} which only tells for which pairs of
points x1 and x2 f is the same and for which it differs:

Definition 1. The function f is compatible with the contrast
c if, and only if, for all x1, x2 2 X :

c(x1, x2) = �f(x1)=f(x2).

A contrast function cannot be arbitrary:

Lemma 1. The predicate c(x1, x2) = 1 is an equivalence
relation if, and only if, there exists a function f compatible
with c.

Proof. If c(x1, x2) = 1 defines an equivalence relation on
X , then such a function is given by the projection on the
quotient f̂ : X ! X/c = Y . On the other hand, setting
c(x1, x2) = �f(x1)=f(x2) = 1 for any given function f
is reflexive, symmetric and transitive because the equality
f(x1) = f(x2) is.

Definition 2. The contrast function c is admissible if, and
only if, c(x1, x2) = 1 defines an equivalence relation.

Full knowledge of the contrast function c only specifies
the level sets of the function f :

Lemma 2. Let f be any function compatible with the ad-
missible contrast c. Then, we can write f = ◆ � f̂ as the
composition of an injection ◆ : X/f ! Y and the (unique)
projection f̂ : X ! X/c of X onto the equivalence classes
X/c of the equivalence relation c(x1, x2) = 1.

Proof. From elementary algebra, we can decompose any
function f : X ! Y as

f : X f̂�! X/f
◆�! Y

where ◆ is an injective function and f̂ projects X to the quo-
tient X/f , i.e. the collection of subsets X ⇢ X where f(x)
is constant (level sets). The latter are also the equivalence
classes of the relation f(x1) = f(x2). Due to definition 1,
this is the same equivalence relation given by the contrast c,
so that X/f = X/c.

Note that, in our contrastive learning formulation, we do
not define the contrast c on the sample space X , but rather on
the transformation space T . The following lemma suggests
that defining a contrast c(T, T 0) on transformations instead
of data samples is usually acceptable:

Lemma 3. Let c : T ⇥ T ! {0, 1} be an admissible
contrast function defined on a set (e.g., a batch) of gen-
eralized data transformations T . Furthermore, let x be a
dataset and let x(T ) 2 X be the sample indexed by trans-
formation T . If x(T ) = x(T 0) ) T = T 0 (i.e. differ-
ent transformations output different samples), then setting
c̃(x(T ), x(T 0)) = c(T, T 0) defines part of an admissible
sample contrast function c̃ on X .

Proof. The expression above defines c̃ on the sample space
X̃ = {x(T ) : T 2 T } ⇢ X . Reflexivity, symmetry and
transitivity are inherited from c. However, if the same data
point x(T ) = x(T 0) can be obtained from two different
transformations T and T 0, the definition is ill posed. The
hypothesis in the lemma guarantees that this is not the case.

A.1.1 Compositional transformations

Next, we consider the case in which T = (t1, . . . , tM ) is a
composition of individual transformations tm, each with its
own contrast tm:

Definition 3. We say that a contrast function c(tm, t0m) is
distinctive if it is given by �tm=t0m . We say that it is invariant
if it is identically one.

The following lemma provides a formula for the overall
contrast function c(T, T ) given the contrasts for the individ-
ual factors.

Lemma 4. Let c(tm, t0m) = 1 be admissible contrast func-
tions, either distinctive or invariant. Then, the product
c(T, T 0) =

QM
m=1 c(tm, t0m) is also admissible.

Proof. The reflexive and symmetric properties are obviously
inherited. For the transitive property, note that c(T, T 0) = 1
if, and only if, 8m : c(tm, t0m) = 1. Hence:

c(T, T 0) = c(T 0, T 00) = 1

) 8m : c(tm, t0m) = c(t0m, t00m) = 1

) 8m : c(tm, t00m) = 1 ) c(T, T 00) = 1.

Finally, we show that, essentially, the formula above is
the only reasonable one. For this, we only require c(T, T 0)
to be monotonic in the individual factors; i.e., if more factors
become 1, then c(T, T 0) can only grow:



Definition 4. We say that c(T, T 0) is monotonic in the indi-
vidual factors if, and only if, for any three transformations
T, T 0, T 00 such that c(tm, t0m)  c(tm, t00m) for all the fac-
tors, then we also have c(T, T 0)  c(T, T 00).

Next, we show that c can only have a very limited form:

Lemma 5. Suppose that the admissible monotonic contrast
c(T, T 0) is expressible solely as a function of the individual
admissible contrasts c(tm, t0m) for m = 1, . . . ,M . Then,
up to a permutation of the transformations, we can always
write

c(T, T 0) =
mY

i=1

c(ti, t
0
i)

where 0  m  M . In particular, m = M is the only
option that is guaranteed not to ignore some of the factors.

Proof. From the assumptions, we can write

c(T, T 0) = h � v(T, T 0)

where h is a function of the binary vector

v(T, T 0) = (c(t1, t
0
1), . . . , c(tM , t0M )) 2 BM .

Furthermore, since invariant factors are constant, they do not
affect the function; hence, without loss of generality we can
assume that all factors are distinctive.

Since all factors are distinctive, we can construct two
transformations T 0 = (t01, . . . , t0M ) and T 00 = (t001 , . . . , t

00
M )

such that v(T 0, T 00) = (0, . . . , 0) (i.e., all the contrasts
c(t0m, t00m) are null). If c(T 0, T 00) = 1, then, due to mono-
tonicity, c(T 0, T 00) is identically 1 and the lemma is proved
for m = 0.

If not, let c(T 0, T 00) = h(0, . . . , 0) = 0. Then, for any
given binary vector v, we can construct a transformation
T = (t1, . . . , tM ) such that v(T, T 0) = v and v(T, T 00) = v̄
as follows:

tm =

(
t0m, if vm = 1,

t00m, otherwise.

We cannot have c(T, T 0) = h(v) = h(v̄) = c(T, T 00) = 1;
otherwise, due to the transitivity of c, we would have
c(T 0, T 00) = h(0, . . . , 0) = 1, which contradicts our as-
sumption. Hence, h must partition the space of binary vec-
tors in two halves, the ones for which h(v) = 1 and their
complements h(v̄) = 0.

Now let v be a vector with the minimal number of 1
such that h(v) = 1. Again without loss of generality, we
can assume this is of the type v = (1, . . . , 1, 0, . . . , 0) with
m ones in front. Due to monotonicity, all vectors of type
v0 = (1, . . . , 1, vm+1, . . . , vM ) must also have h(v0) = 1;
by taking their complement, the previous result shows
that all vectors v00 = (0, . . . , 0, vm+1, . . . , vM ) must have
h(v00) = 0. This is also the case for any vector of the type

(v1, . . . , vm, 0, . . . , 0) where any vi = 0 for 1  i  m
(because m is the minimum number of ones required for
h(v) = 1). We conclude that h(v) = 1 if, and only if,
(v1, . . . , vm) = (1, . . . , 1).

A.1.2 Forming batches

Let T̂1 ⇥ · · · ⇥ T̂M be a composite space of generalized
data transformations, so that data points are indexed as
x(t1, . . . , tM ). Furthermore, let c(tm, t0m) be correspond-
ing admissible contrast functions and let c(T, T 0) be their
product, as in lemma 4. As before, we assume that the
functions are of two kinds:

• invariant: c(tm, t0m) = 1.

• distinctive: c(tm, t0m) = �tm=t0m .

Let I ⇢ {1, . . . ,M} be the subset of indices m correspond-
ing to the invariant transformations and D = {1, . . . ,M}\I
the distinctive ones.

Let sample(T̂m;Km) be a stochastic operator that sam-
ples Km  |T̂m| transformations from T̂m without replace-
ment. We sample a batch recursively:

• Let T1 = sample(T̂1;K1)

• Let Tm =
S

T2Tm�1
T � sample(T̂m;Km)

At each level of the recursion, each transformation is ex-
tended by sampling Km more transformations (note that
no two identical transformations can be generated in this
manner). Hence |TM | = K1 · · ·KM .

Lemma 6. There are exactly (
Q

m Km)(
Q

m2I Km) pairs
of transformations (T, T 0) 2 TM⇥TM for which c(T, T 0) =
1. Of these, exactly

Q
m Km are trivial pairs (T = T 0).

Hence, there are (
Q

m Km)(
Q

m2I Km � 1) non-trivial
pairs for which c(T, T 0) = 1.

Lemma 7. For each T 2 TM , there are exactly (
Q

m Km)�
(
Q

m2I Km) pairs (T, T 00) such that c(T, T 00) = 0.

For example, in SimCLR M = 2, D = {1}, I = {2},
K1 = B/2, K2 = 2, |T2| = B, there are B(2 � 1) = B
non-trivial pairs of transformations for which c(T, T 0) = 1,
and, for each T , there are B � 2 pairs of transformations for
which c(T, T 00) = 0.

The lemmas above suggest that we should pick Km � 2
for at least one invariant factor and at least Km � 2 for at
least one distinctive factor, as otherwise eq. (1) is degenerate.

A.1.3 Limitations

In general, we want more restrictive requirements than the
one described above. When learning f , difficult (and there-
fore interesting) cases amount to: learning to be sensitive



to ‘small’ variations in the distinctive factors and learn to
be insensitive to ‘large’ variations in the invariant factors.
For the former, we would like f to observe variations in a
single distinctive factor at a time, as these are the ‘smallest’.
For these individual variations to exist at all in the batch, we
should choose Km � 2 for all distinctive factors m 2 D.

Even so, the hierarchical scheme in general prevents us
from observing all individual variations. In fact, suppose that
two transformations T and T 0 in TM differ for factor m (i.e.
tm 6= t0m). Then, the remaining factors tm+1 6= t0m+1, . . .
also differ in general because successive transformations are
sampled independently in different branches of the tree. This
means that we cannot, in general, observe a change in tm
alone, so the function f may not learn to be distinctive to
this ‘minimal’ change in isolation.

Note that this is a limitation that affects our sampling
scheme as well as existing methods such as SimCLR. For-
tunately, in practice this is often not an issue. There are in
fact two mitigating factors, which apply to most existing
formulations, including the new ones presented here.

First, some transformations spaces T̂m are very small, and
in fact binary (e.g., modality splitting, time reversal). In this
case, Km = 2 means that transformations are sampled ex-
haustively, so for level m the hierarchical sampling scheme
does extract all possible combinations of transformations.

Second, in other cases the issue is moot due to the na-
ture of the transformations and the data. For instance, in
SimCLR the first transformation t1 amounts to sampling a
certain image xi, and the second transformation t2 amounts
to sampling two data augmentation g1i(xi) and g2i(xi), dif-
ferent for each image. The issue here is that we cannot
observe a change in the index i for the same augmentation
g(x1) and g(x2), as these data points do not exist in the
batch. This means that the representation f can only learn
to distinguish two different images xi that also have two
different augmentations applied to them. Because of the
particular nature of the training data (ImageNet) this is likely
irrelevant since different images xi are unrelated in any case,
so applying transformations does not significantly alter their
statistical relationships.

However, note that this is not always the case. For in-
stance, if SimCLR was applied to a dataset of pre-aligned
faces (for the purpose of learning face recognition), then be-
ing unable to contrast different faces g(x1) and g(x2) under
the same transformation g would make negative pairs far to
easy to discriminate.

A.2. Reduction in variance theorem

A.2.1 Proof of theorem 1

For ease of notation, we will express eq. 1 as the expected
value of a loss function `, which subsumes the weight (w),

contrast (c), feature extractor (�) and log-softmax functions:

L = ET,T 0⇠T̂ [` (x(T ), x(T 0))] . (2)

The expectation is over pairs of transformations in T̂ =
T̂1 ⇥ . . .⇥ T̂M , the space of all compositions of transforma-
tions, which can be applied to the data x. Note that eq. 1
contains a sum over a third transformation (T 00) to compute
the softmax’s normalization, which is also subsumed by `
in eq. 2 as this third transformation is not essential for the
rest of the proof. We will separate each transformation into
invariant and distinctive parts, T = (T I , TV ) respectively
with T I 2 T̂I and TV 2 T̂V (see sec. A.1.2). Note that this
separation is merely a notational convenience; the individual
transformations can be applied to the data in any order, with
x(T I , TV ) = x(t1 � . . . � tM ), and each ti belonging to
either T I or TV . Then, eq. 2 becomes:

L = ET I ,T 0I⇠T̂I , TV ,T 0V ⇠T̂V

⇥
`
�
x(T I , TV ), x0(T 0I , T 0V )

�⇤
.

Consider a mini-batch of data sample pairs and
their associated transformation compositions, Bdirect =
n
T I
i , T

V
i , T 0I

i , T
0V
i

oK2
IK

2
V

i=1
, sampled as T I

i , T
0I
i ⇠ T̂I and

TV
i , T 0V

i ⇠ T̂V . The batch size is a function of KI =Q
j2I Kj and KV =

Q
j2V Kj , the number of sampled

invariant and distinctive transformations in our method, re-
spectively. The batch size of K2

IK
2
V was chosen to allow a

direct comparison. The expected value of the loss over this
batch is then the simple empirical average:

L̂d =
1

K2
IK

2
V

K2
IK

2
VX

i

`
⇣
x(T I

i , T
V
i ), x(T 0I

i , T
0V
i )

⌘
. (3)

Now consider the domain of transformed samples X =
{x(T I , TV ) : T I 2 T̂I , TV 2 T̂V }. Due to the assumed
injectivity of all t 2 T I , we may partition the domain using
one partition Xj = {x(T I , TV

j ) : T I 2 T̂I} per distinctive
transformation TV

j , i.e.: X = [KV
j Xj , with Xj \ Xj0 =

;, 8j, j0. The probability distribution of the samples has
density p(T I , TV ), and the density in each partition is thus
pj(T I) = KV p(T I)�T I2Xj

, with � the indicator function.
GDT can then be interpreted as a stratified sampling

method, with one stratum (partition) per pair of distinc-
tive transformations. The domain being sampled by the
expectation in eq. 2 is X 2 = [KV ,KV

jj0 Xj ⇥ Xj0 , and strati-
fied sampling consists of sampling an equal number of K2

I
sample pairs from each of the K2

V partitions:

L̂ =
1

K2
V K

2
I

KI ,KI ,KV ,KVX

ii0jj0

`
�
x(T I

i , T
V
j ), x(T I

i0 , T
V
j0 )

�
.

(4)
Note the subtle difference from eq. 3 in the summation
ranges, and that the same samples and transformations are



reused for both elements of each pair, instead of being sam-
pled independently to fill a mini-batch. To make the follow-
ing derivations easier, note that we can equivalently express
eq. 4 as:

L̂ =
1

K2
V

KV ,KVX

jj0

L̂jj0 ,

with L̂jj0 = 1
K2

I

PKI ,KI

ii0 `
�
x(T I

i , T
V
j ), x(T I

i0 , T
V
j0 )

�
. We

will first show that this pairwise stratified sampling is an
unbiased estimate of eq. 2:

E[L̂] = 1

K2
V

KV ,KVX

jj0

E[L̂jj0 ]

=
1

K2
V

KV ,KVX

jj0

Ljj0

= L,

where we use the expectation Ljj0 of the loss function
evaluated on the partition jj0 (corresponding to distinc-
tive transformations with indices j and j0), as Ljj0 =
ET I2Xj ,T 0I2Xj0

⇥
`
�
x(T I , TV

j ), x(T 0I , TV
j0 )

�⇤
.

Similarly, we can also define each partition’s loss vari-
ance �2

jj0 = VT I2Xj ,T 0I2Xj0

⇥
`
�
x(T I , TV

j ), x(T 0I , TV
j0 )

�⇤
.

Then, from eq. 4 we obtain directly

V[L̂] = 1

K4
V

KV ,KVX

jj0

V[Ljj0 ]

=
1

K4
V K

2
I

KV ,KVX

jj0

�2
jj0 .

As a point of comparison, the variance of the direct sam-
pling estimate is:

V[L̂d] =
1

K2
V K

2
I

�
(E(T I ,T 0I)2X 2 [`2(x(T I , TV ), x(T 0I , T 0V )

x(T 0I , T 0V ))]� L2)
�

=
1

K2
V K

2
I

0

@ 1

K2
V

KV ,KVX

jj0

ET I2Xj ,T 0I2Xj0

⇥
`2

�
x(T I , TV

j ), x(T 0I , TV
j0)

�⇤
� L2

1

A

=
1

K2
V K

2
I

0

@ 1

K2
V

KV ,KVX

jj0

�
L2
jj0 + �2

jj0
�
� L2

1

A

=
1

K4
V K

2
I

KV ,KVX

jj0

⇣
�2
jj0 + (Ljj0 � L)2

⌘

� 1

K4
V K

2
I

KV ,KVX

jj0

�2
jj0

completing the proof.

A.3. Additional experimental results
A.3.1 Modality ablation

In table A.1, we provide the results of running our baseline
model (sample-distinctiveness only) within-modally instead
of across modalities and find a sharp drop in performance.
Table A.1: Within vs cross-modal learning. Results on ac-
tion classification performance on HMDB-51 and UCF-101
is shown for finetuning accuracy (Acc) and frozen retrieval
(recall@1) after pretraining on Kinetics-400 for 50 epochs.

HMDB UCF
Acc. R@1 Acc. R@1

Within-modal 37.8 13.9 76.4 28.0
Cross-modal 52.4 21.8 87.6 54.8

A.3.2 Dataset details

The Kinetics-400 dataset [39] is human action video dataset,
consisting of 240k training videos, with each video repre-
senting one of 400 action classes. After filtering out videos
without audio, we are left with 230k training videos, which
we use for pretraining our model.

HT100M [50] is a large-scale instructional video collec-
tion of 1.2 million Youtube videos, along with automatic
speech recognition transcripts. There are more than 100
million clips (ASR segments) defined in HowTo100M.

HMDB-51 [42] consists of 7K video clips spanning 51
different human activities. HMDB-51 has three train/test
splits of size 5k/2k respectively.

UCF-101 [67] contains 13K videos from 101 human ac-
tion classes, and has three train/test splits of size 11k/2k
respectively.

IG65M [21] is a large-scale weakly supervised dataset
collected from a social media website, consisting of 65M
videos of human action events. We use the all the videos in
the dataset for pretraining.

A.3.3 Preprocessing details

The video inputs are 30 consecutive frames from a randomly
chosen starting point in the video. These frames are resized
such that the shorter side is between 128 and 160, and a cen-
ter crop of size 112 is extracted, with color-jittering applied.
A random horizontal flip is then applied with probability
0.5, and then the inputs’ channels are z-normalized using



mean and standard deviation statistics calculated across each
dataset.

One second of audio is processed as a 1⇥ 40⇥ 99 image,
by taking the log-mel bank features with 40 filters and 99
time-frames after random volume jittering between 90% and
110% is applied to raw waveform, similar to [4]. The spec-
trogram is then Z-normalized, as in [41]. Spec-Augment is
then used to apply random frequency masking to the spectro-
gram with maximal blocking width 3 and sampled 1 times.
Similarly, time-masking is applied with maximum width 6
and sampled 1 times.

For the text, we remove stop words from the narrations
as in [50]. For each narration, we take a maximum of 16
consecutive words covering a max duration of 4 seconds as
in [49].

A.3.4 Pretraining details

We use R(2+1)D-18 [72] as the visual encoder fv and
ResNet [32] with 9 layers as the audio encoder fa unless
otherwise noted; both encoders produce a fixed-dimensional
output (512-D) after global spatio-temporal average pool-
ing. For the text encoder, we use the Google News self-
supervised pre-trained word2vec (d=300) embedding [51],
that is linearly projected to 2048D and max-pooled as in
[49]. After the inputs are encoded by their respective modal-
ity encoders, the vectors are then passed through two fully-
connected layers with intermediate size of 512 to produce
256-D embeddings as in [8] which are normalized by their
L2-norm [77]. The embedding is used for computing the
contrastive loss, while for downstream tasks, a linear layer
after the global spatio-temporal average pooling is randomly
initialized. For NCE contrastive learning, the temperature ⇢
is set as 1/0.07. For optimizing these networks, we use SGD.
The SGD weight decay is 10�5 and the SGD momentum is
0.9. We use a mini-batch size of 8 on each of our 64 GPUs
giving an effective batch size of 512 for distributed training.
The initial learning rate is set to 0.01 which we linearly scale
with the number of GPUs, after following a gradual warm-up
schedule for the first 10 epochs [24]. For Kinetics, we train
for 100 epochs (3 days), while for HT100M, we train for 40
epochs (3 days).

A.3.5 Ablation experiment details

For the ablations, we only pretrain for 50 epochs on the
Kinetics-400 dataset, and 20 epochs on the HT100M dataset,
since it is a much larger dataset.

For downstream evaluation, we only evaluate on the first
fold of HMDB-51 but found the performance between folds
to be close (within 1%).

A.3.6 Evaluation details

All evaluation code is provided in the Supplementary Mate-
rial.
Video Action Recognition. During training, we take 10
random clips of length 32 frames from each video. For video
clip augmentations, we follow a standard protocol as in
[41]. During evaluation, we uniformly sample 10 clips from
each video, average softmax scores, and predict the class
having the highest mean softmax score. We then measure the
mean video top-1 accuracy across all videos and all official
folds. During training, we use SGD with initial learning rate
0.0025, which we gradually warm up to 2 ·10�2 in the first 2
epochs. The weight decay is set to 5·10�3 and momentum to
0.9. We use a mini-batch size of 32 and train for 12 epochs
with the learning rate multiplied by 5 · 10�2 at 6 and 10
epochs. We compare our GDT pretrained model with both
self-supervised methods, and supervised pretraining, and
report average top-1 accuracies on UCF101 and HMDB-51
action recognition task across three folds in table 4.
Few-shot classification We follow the protocol in [38]
and evaluate our our GDT pretrained network using few-
shot classification on the UCF-101 dataset, and additionally
on HMDB-51. We randomly sample n videos per class from
the train set, average the encoder’s global average pooled
features from ten clips per training sample and measure
classification accuracy performance on the validation set
using a k-nearest neighbor classifier, with k set to 1.
Video Retrieval. We follow the standard protocol as out-
lined in [80]. We use the split 1 of UCF101, and additionally
HMDB-51. We uniformly sample 10 clips per video, and
average the max-pooled features after the last residual block
for each clip per video. We use these averaged features from
the validation set to query the videos in the training set. The
cosine distance of representations between the query clip
and all clips in the training set are computed. When the class
of a test clip appears in the classes of k nearest training clips,
it is considered to be correctly predicted. We report accura-
cies for k = 1, 5, 20 and compare with other self-supervised
methods on UCF101 and HMDB-51 in table 3.

Fig. A.1: Feature visualizations with PCA and t-SNE on 30
videos of a single, random class of HMDB-51. For each
video, we sample 10 temporal clips and encode video-ID
with color. Embeddings are generated from our time-shift
distinct model (Tab.1 (l)).



A.3.7 Additional Qualitative analysis

In fig. A.1, we present a PCA and t-SNE [73] plots of the
features obtained by our model (DS-d, TR-d, TS-d) (Tab. 1,
row (l)). We observe that even comparing to videos of the
same action category, the individual clips are well separated,
showing that the model is learning to distinguish between
different time intervals.


