
6. Appendix
6.1. Implementation Details

While videos in Kinetics are 10 seconds long, we ran-
domly sample either 1-second (30 frames), or 2-second (60
frames) clips from the 30fps videos. For the R(2+1)-D-18
visual encoder, the dimensions of the res5 feature map be-
fore spatial pooling is 512 x T x 7 x 7 for a 112 x 112
resolution video, where T = 4 for 30-frame (1 second) in-
put, and T = 8 for 60-frame (2 second) input. After spatial
pooling, we use either average pooling or a transformer as
the temporal pooling function for the visual encoder, but al-
ways use average pooling for the audio encoder. The trans-
former’s layers dimensionality are set to 512-D. Both en-
coders produce a fixed-dimensional representation vectors
after temporal aggregation (512-D). Both vectors are then
passed through two fully-connected layers with intermedi-
ate size of 512 to produce 256-D embedding vectors z as
in [106]. We use these embeddings in our loss eq. (7) and
train our model for 100 epochs. For the visual component
of the video, we use a 30 frame RGB clip as input, at 30 fps
covering 1 second. The video clip has a spatial resolution
of 112⇥112 pixels. For input data augmentation, we ap-
ply random crops, horizontal flips, Gaussian blur and color
jittering, all clip-wise consistent, following the protocol of
SimCLR [24], and we ablate multiple settings for spatial
and temporal feature cropping sizes. For the audio input,
we extract a 1-second log-mel spectrogram of dimension
257 ⇥ 199 starting at the same time as the visual compo-
nent. We also apply volume jittering to increase the robust-
ness of our audio features. We optimize this model using
SGD with momentum 0.9, weight decay 10�5 and learn-
ing rate 0.64, with a warm-up period of 10 epochs. For
NCE contrastive learning, the temperature ⌧ is set as 0.1 for
cross-modal loss, and 0.5 for the within-modal loss. We use
a mini-batch size of 8 on each of our 64 GPUs giving an
effective batch size of 512 for distributed training. In our
ablations, we evaluate the learned representation by fine-
tuning the visual encoder on fold 1 of the HMDB-51 [77]
action recognition dataset.

6.1.1 State-of-the-Art Experiment Details

For our state-of-the-art model, we train for 100 epochs, us-
ing R(2+1)-D-18 visual encoder with transformer temporal
attention pooling, and Resnet-9 for audio encoder. We use
60 frames as input, and feature-crop augmentation (space:
2⇥62+4⇥42 & time: 2⇥3+1⇥2).

6.2. Transformer Architecture Details
We use a 2-layer transformer, with 4 attention heads, and

hidden dimension 512. The input to the transformer is the
spatially averaged output of the last convolutional layer of

Method Pretraining Acc%
DCASE ESC50

Autoencoder [12] - - 39.9
Random Forest [109] - - 44.3
Piczak ConvNet [108] - - 64.5
RNH [116] - 72 -
Ensemble [121] - 77 -
ConvRBM [117] - - 86.5

AVTS [74] K400 91 76.7
XDC [6] K400 – 78.0
AVID [97] K400 93 79.1
ACC [90] K400 – 79.2

Ours: STiCA K400 94 81.1
SoundNet [12] SNet 88 74.2
L3-Net [7] SNet 93 79.3
AVTS [74] SNet 94 82.3
DMC [60] SNet – 82.6

AVTS [74] AS 93 80.6
XDC [6] AS – 85.8
MMV [5] AS – 86.1
AVID [97] AS 96 89.2
GDT [106] AS 98 88.5
ACC [90] AS – 90.8
Human [109] – – 81.3

Table 6: Audio classification. Downstream task ac-
curacies on standard audio classification benchmarks on
DCASE2014 and ESC50. Dataset abbreviations AudioSet,
Kinetics400, SoundNet,

R(2+1)D-18 video backbone. The transformer contextual-
izes features across time to output a fixed feature length rep-
resentation of dimension 512, which is then passed to MLP
head for contrastive learning. While transformers generally
benefit from being optimized with Adam [147], we adhere
to using SGD for simplicity. We also do not observe any
stability issues, likely because the transformer is quite shal-
low.

7. Additional experiments
7.1. Audio Classification

For completeness, we also present audio classification
results on ESC-50 [108] and DCASE-2014 [122]. ESC-
50 [109] is an environmental sound classification dataset
which has 2K sound clips of 50 different audio classes.
ESC-50 has 5 train/test splits of size 1.6K/400 respectively.
DCASE2014 [122] is an acoustic scenes and event clas-
sification dataset which has 100 training and 100 testing
sound clips spanning 10 different audio classes. We demon-



Method Architecture Dataset Top-1 Acc%
HMDB UCF

RotNet3D [65] S3D K600 24.8 47.7
CBT [125] S3D+BERT K600 29.5 54.0
MemDPC [53] R-2D3D K400 30.5 54.1
AVSF [143] AVSF K400 44.1 77.4
CoCLR [54] S3D K400 46.1 74.5

Ours: STiCA R(2+1)D-18 K400 48.2 77.0
MIL-NCE [93] S3D HT 53.1 82.7
XDC [6] R(2+1)D-18 IG65M 56.0 85.3
MMV [5] R(2+1)D-18 AS 60.0 83.9
ELo [110] R(2+1)D-50 Y8M 64.5 –

Table 7: Comparison to state-of-the-art. Transfer learn-
ing results on UCF-101 and HMDB-51 when video back-
bone is frozen.

strate competitive performance relative to the state-of-the-
art, despite training on a much smaller and less audio-
rich Kinetics-400 dataset. We extract 10 equally spaced
2-second sub-clips from each full audio sample of ESC-
50 [109] and 60 1-second sub-clips from each full sample
of DCASE2014 [122]. We save the activations that result
from the audio encoder to quickly train the linear classi-
fiers. We use activations after the last convolutional layer of
the ResNet-9 and apply a max pooling with kernelsize (1,3)
and stride of (1,2) without padding to the output. For both
datasets, we then optimize a L2 regularized linear layer with
batch size 512 using the Adam optimizer [72] with learning
rate 1x10�4, weight-decay set to 5x10�4 and the default
parameters. The classification score for each audio sample
is computed by averaging the sub-clip scores in the sample,
and then predicting the class with the highest score. The
mean top-1 accuracy is then taken across all audio clips and
averaged across all official folds.

7.2. Linear probing results

In Tab. 7, we compute the linear classification results of
our model compared to other recent methods. We find that
our best model has competitive 3-fold linear evaluation re-
sults of 48.2% on HMDB-51 and 77.0% on UCF-101.

7.3. Supervised training on K-400

Here we experiment with training supervisedly on
Kinetics-400 and observing the effect of using feature crop-
ping (with the configuration 2 medium and 2 small latent
space crops). The experimental results are given in Tab. 8
We find that even though our method is designed for con-
trastive cross-modal pretraining, using feature crops can
help in training in a supervised manner too.

Fm-Crop HMDB-51 Top-1 Acc.

7 67.6
3 69.0

Table 8: Supervised Training. We train the
R(2+1)D+Transformer architecture supervisedly on
Kinetics-400 with and without feature crops enabled.

7.4. Audio-Visual Heatmap Visualizations
In Fig. 3, we show examples that our model truly learned

some spatial correspondence between a region and audio.
We have done this by visualizing the strength of the dot-
product of the visual feature map (without pooling) with
the audio feature vector.

Figure 3: Heatmap visualizations. Heatmaps are ob-
tained by removing the spatial pooling layer and visualiz-
ing the strength of the dot-product of the audio feature vec-
tor with the video feature-map as in [8]. Here, we show
selected samples from Kinetics-400 training set of the re-
sulting heatmaps along with the middle frame of the video.

7.5. Preventing Shortcut Learning with Feature
Crops.

Noise contrastive learning works better when you can re-
duce the mutual information between the input pairs [131]
as its harder for the network to cheat. This can be achieved
by taking multiple spatial crops of images in the input space
and independently applying different augmentations, such
as color jittering and Gaussian blurring, to the cropped in-
puts. However, as mentioned above, taking more than 2
crops in input space is both memory and computationally
infeasible for multi-modal video data. Crops in feature
space, on the other hand, allows us to take multiple crops for
noise contrastive learning. However, since CNNs have large
receptive fields that easily cover the full frame, there may
be shortcut learning with feature crops as information may



leak between the crops from same feature map. To alleviate
this, we take feature crops from two originally augmented
video clips, allowing us to make NCE comparisons across
modalities and individual augmentations (such as color jit-
ter), leading to a beneficial reduction in mutual informa-
tion. Furthermore, while the theoretical receptive fields of
units in later layers are indeed very large, units tend to be
sensitive to an effective area which is significantly smaller
than the theoretical receptive field [89, 153], further reduc-
ing the mutual information between inputs for noise con-
trastive learning.


