
A. Supplementary materials
In this supplementary material, we discuss and analyse more experimental evidences which corroborate the effectiveness

of the proposed Semantic Neighbourhood and Mixture Prediction Network (SnMpNet). We start this discussion with the
in-depth details of the two baseline methods developed for UCDR.

A.1. Implementation Details for UCDR Baseline Methods

As discussed in the main paper, we modified two recent algorithms from the field of Domain Generalization and Zero-shot
Domain Generalization so that they can serve as the baseline retrieval models for UCDR. Both these baselines are subjected
to the same train-time augmentations as SnMpNet.

EISNet-Retrieval. We replace the backbone network of EISNet [28] (originally ResNet50) with SE-ResNet50 (same as our
SnMpNet). On top of the last layer of this backbone, we insert a 300-d linear layer, which is connected to the classification
branch (the branch with the CE-loss in [28]) of the network. We further modify this CE-loss in [28], and train the model
with the semantic-embedding similarity based CE-loss, described in equation (7). This modification in CE-loss accounts for
the semantic information used in proposed SnMpNet (which was not present in [28]’s original architecture) and thus it is fair
to compare the performance of this modified EISNet-retrieval model with proposed SnMpNet. We leave the other branches
of EISNet-architecture [28] and the corresponding losses unchanged.

CuMix-Retrieval. Similar to the previous case, here also we use SE-ResNet50 as the backbone network. In addi-
tion, we leverage the image-level and feature-level cross-domain and cross-category mixing of samples, as introduced
in [17]; and thus we refer to this model as CuMix-Retrieval. To account for category-discrimination of these mixed-up sam-
ples in the learned feature-space, we first apply the mix-up classification loss Lmix

CE (equation (8) in main paper) on samples
mixed-up at the image-level. Towards that goal, we employ a 300-d linear layer on top of the last layer of the SE-ResNet50
backbone, so that the output of this 300-d layer can be used to compute the semantic similarities with class-embeddings,
which are required for Lmix

CE . To make use of the feature-level mixing, we generate g∗ = αgc,d
i +(1−α)[βgp,d

j +(1−β)gr,n
k ],

at the output of the backbone network; and consequently pass it through the above-mentioned 300-d layer to obtain the
final feature f∗. We now re-compute Lmix

CE as Lmix−feat
CE with respect to these f∗-features. Thus, the final loss becomes,

LCuMix−Retrieval = LCE + ω1Lmix
CE + ω2Lmix−feat

CE , where LCE is the standard cross-entropy loss computed for
original (not generated through mix-up) samples, and ω1 and ω2 are two experimental hyper-parameters. Thus, this
CuMix-Retrieval model now has access to the additional knowledge introduced by the class-name embeddings and the same
backbone network as SnMpNet; and hence it is fair to compare its performance with SnMpNet for UCDR.

It can be observed that the final features of test samples (both query and search set data) obtained from these models are
300-dimensional. Thus, in absence of any existing methods in literature, these baseline models serve as the logical and fair
competitors of proposed SnMpNet.

Now, we move on to the additional experimental analysis presented in the following section.

A.2. Experiments and Analysis contd.

In this section, we explore the robustness of the proposed model by analyzing it for different variations of protocols.

1) UcCDR Evaluation on additional datasets. We discussed the performance of proposed SnMpNet for UcCDR-
protocol in Table 3, and compared it with existing ZS-SBIR methods in Table 1, ZS-SBIR being a special form of the
same protocol, where sketch and real images are used as query and search-set domains, respectively. We extend this
analysis further on two other challenging datasets: 1) Sketchy-extended [24], with split proposed in [26] - randomly chosen
25-classes are used as unseen test classes and out of the rest 100-classes, 90 are used for training and 10 used for validation;
and 2) TU-Berlin3, with split followed in [26][5] etc. - out of total 250-classes, randomly chosen 30-classes (with at
least 400-images per category) are kept for testing, and 220-classes (200 for training and 20 for validation) are used as
seen-classes.

The results are summarized in Table 6. We use mAP@all and Prec@100 as the evaluation metrics. For SEM-PCYC [5]
and StyleGuide [7], we compare with the reported results in the respective papers. On the other hand, we use the implemen-
tation provided by the authors of [15], but unfortunately were unable to reproduce their reported numbers. Thus, we present
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Method Backbone Network output dim.
TU-Berlin extended Sketchy extended

mAP@all Prec@100 mAP@all Prec@100

Existing SOTA

SEM-PCYC [5] (CVPR’19) VGG-16 64 0.297 0.426 0.349 0.463
Style-guide [7] (TMM’20) VGG-16 200 0.2543 0.3551 0.3756 0.4842
SAKE-512 [15] (ICCV’19) SE-ResNet50 512 0.475 0.599 0.547 0.692
SAKE-512 (our evaluation) SE-ResNet50 512 0.3468 0.5225 0.4690 0.6665

SAKE-Variants
SAKE-512-w/o Label SE-ResNet50 512 0.3314 0.5052 0.3599 0.5216
SAKE-300-w/o Label SE-ResNet50 300 0.3233 0.4959 0.3312 0.4841

SnMpNet SE-ResNet50 300 0.3568 0.5226 0.4412 0.5887

Table 6: Peformance comparison for ZS-SBIR on Sketchy extended and TU-Berlin.

the retrieval accuracies obtained by us as SAKE (our evaluation) in Table 6, as well as the originally reported mAP-values
for reference. Out of the SOTA-methods listed in the table, owing to the nature of the algorithms, it is feasible to create
domain-independent variants only for SAKE [15]. Thus, similar to Table 1 in the main paper, here also we evaluate the two
SAKE-variants for comparison. Following the same pattern as before, we observe that SAKE’s performance deteriorates for
both of these selected datasets when the domain-indicator is removed. Our SnMpNet outperforms both of these variants, as
well as SEM-PCYC [5] and Style-guide [7] for both the datasets. Additionally, it has a superior performance even over the
original SAKE-model with the domain indicator, on TU-Berlin, further validating its suitability for the UCDR protocol.

2) UdCDR-Evaluation for QuickDraw. Previously in Table 4 in the main paper, we have evaluated and compared
SnMpNet with the two retrieval baselines, EISNet-retrieval and CuMix-retrieval, on the UdCDR protocol using Sketch as
the unseen domain. For a more exhaustive analysis and completeness, we now repeat the same experiment with Quickdraw
as the unseen domain. We construct the query set here with 10% of available samples, selected randomly, from each of the
seen classes in QuickDraw. The search set again contains the seen-class RGB images as before. We summarize the retrieval

Method mAP@200 Prec@200
EISNet-retrieval 0.0637 0.0309
CuMix-retrieval 0.0648 0.0298

SnMpNet 0.1077 0.0509

Table 7: UdCDR-evaluation on DomainNet for unseen QuickDraw query domain. The search set contains only seen class
real images. The models are trained on 5 domains - Real, Sketch, Infograph, Painting and Clip-art.

results in Table 7 and observe that SnMpNet outperforms the two baselines here as well.

3) Effect of Multi-domain Training data. Here we explore the effect of using training data from more than 2 domains to
address the cross-domain retrieval. Towards this end, we train SnMpNet using only 2-domains (M=2) (Sketch/QuickDraw
and Real) and observe the retrieval performance for UCDR and UcCDR protocols. The results are summarized in Table 8
for two configurations of the search set - a) when only unseen classes are present in the search set and b) the search set
contains samples from both seen and unseen classes. We also mention SnMpNet’s performance using all 5-training domains
(a common practice in DG) in Table 8 for ease of comparison. Importantly, we observe that the performance boost on using
the three auxiliary domains is more pronounced for UCDR than UcCDR. Thus, we can infer that the information from
auxiliary training domains enhances the model’s generalization abilities, especially for a new unseen domain.

4) Effect of weighting parameter κ. In the main paper, we propose a novel semantic neighbourhood loss LSn,
which implements a strict-to-relaxed weighting scheme based on how closely another class is related to the class of the
current sample. It can be observed from equation (2), that the most important hyper-parameter we use in the training process
of SnMpNet is κ, which effectively controls this above-said weighting. In Figure 4, we perform a simple experiment to
observe the effect of this hyper-parameter κ in proposed LSn. To this end, we vary κ over a range 0 ≤ κ ≤ 4 and observe the
retrieval performance (mAP@200) on the validation set data, of a primitive variant of SnMpNet - Base N/W + LSn (Table 5
in the main paper). We again perform this experiment for ZS-SBIR protocol on the Sketchy-extended dataset [32].



Protocol Query Domain Training Domains Unseen-class Search Set Seen+Unseen-class Search Set
mAP@200 Prec@200 mAP@200 Prec@200

UCDR

QuickDraw

Sketch, Real 0.1540 0.1138 0.1332 0.0972
Sketch, Real,

0.1736 0.1284 0.1512 0.1111Infograph, Painting,
Clip-art

Sketch

QuickDraw, Real 0.2490 0.1953 0.2188 0.1741
QuickDraw, Real,

0.3007 0.2432 0.2624 0.2134Infograph, Painting,
Clip-art

U cCDR

Sketch

Sketch, Real 0.4163 0.3455 0.3696 0.3066
Sketch, Real,

0.4221 0.3496 0.3767 0.3109Infograph, Painting,
Clip-art

QuickDraw

QuickDraw, Real 0.2763 0.2181 0.2215 0.1832
QuickDraw, Real,

0.2888 0.2314 0.2366 0.1918Infograph, Painting,
Clip-art

Table 8: Effect of training data from multiple-domains on Retrieval Performance of SnMpNet.

From equation (2) in the main paper, it follows that κ = 0 corresponds to having equal weights for all classes, i.e. on all
elements of the difference, ||D(f c,di )−Dgt(f

c,d
i )||2. For κ ̸= 0, w(c)c = 1 and w(c)k = e−κ, where k is the index of the most

dissimilar class of c, in terms of their semantic distance D(ac,ak). For any other class pair (c, j) (j ̸= k), e−κ < w(c)j < 1,
thereby enforcing the strict-to-relaxed criterion for preserving relative distances between classes.

Figure 4: Effect of κ on validation and test mAP@200 for Sketchy extended split [32].

As shown before in Table 5, we select the model corresponding to κ = 2 for testing based on its highest retrieval accuracy
on the validation set. For completeness, the variation of test set retrieval performance with κ is also plotted in the same figure.

A.3. Qualitative Analysis contd.

Here we further analyse SnMpNet to observe the feature-space and retrieved samples in details.

1) Visualization of the feature-space. We further visualize the learned feature-space through SnMpNet using a
t-SNE [3] plot. Towards that goal, we train SnMpNet with samples from seen classes, which belong to the domains -
Real, Quickdraw, Clip-art, Painting and Infograph. For visualization, we pick the same 10-categories as in Figure 3. We



project features from these selected seen and unseen classes onto the feature-space demonstrated in Figure 5. Moreover,
we project features from both Quickdraw (seen domain, protocol UcCDR in figure) and Sketch (unseen domain, protocol
UCDR in figure). For comparative analysis, we also simulate the feature-space using the CuMix-retrieval algorithm and
present the visualizations in the same figure. We can clearly observe better categorical distinction using SnMpNet over
its close-competitor baseline CuMix-Retrieval. Although CuMix-Retrieval is able to place the 4 unseen-classes in the
neighborhood of the 4 related seen-classes, it is not able to separate the object classes into clear and well-separated clusters
for 5 out of the 10 classes. Only van, ambulance, cow, laptop, and shark have easily distinguishable cluster maps. SnMpNet,

Figure 5: t-SNE plots for UCDR and UcCDR protocols with CuMix-Retrieval and proposed SnMpNet. Here Sketch is unseen
to the models, while QuickDraw and Real are seen. (best viewed in color)

on the other hand, succeeds at both the above objectives and creates near-distinct cluster boundaries for all 10 object classes.

2) Sample Retrieval Results. In continuation to Figure 2 in the main paper, we provide some additional retrieval
results in Figure 6. In contrast to Figure 2, here we use Sketch as the unseen domain for UCDR, and report the top-8



retrieved images against each query for two configurations of the search set, as before. We have also presented sample
retrieved images for a few randomly selected sample queries from a seen domain, Quickdraw, for complete analysis of this
instance of trained SnMpNet. Thus these results correspond to the protocol UcCDR. We observe the similar mistake-pattern
as in Figure 2, i.e. the model struggles when the source queries (sketch or quickdraw) are ambiguous, poorly drawn or lack
sufficient detail pertaining to the category. This results in retrieval of images from categories, which are either semantically
related, or unrelated, but have high shape resemblance with the query. This is observed in several examples: axe being
retrieved for sailboat; finger, skateboard, tornado for asparagus; lightning, megaphone for axe; windmill, campfire for
helicopter; cake, suitcase, ladder for skyscraper etc. In the more challenging search set configuration containing both seen
and unseen classes, incorrect retrievals are from more visually similar or closely related categories. For example, bird, duck,
swan, penguin are retrieved for parrot; zebra, horse for giraffe; monkey for octopus; door for skyscraper etc.

Thus, we have analyzed the proposed model SnMpNet for a wide variation of experimental protocols. We have also
explained the hyper-parameters associated with our model for better understanding. Now, we finally conclude with a brief
discussion on how the proposed UCDR protocol is different from other related works in literature.

A.4. Difference between proposed UCDR and other related works

Here, we discuss the differences between SnMpNet and [27]. A open cross-domain visual search protocol has been
proposed in [27], which is significantly different from the traditional cross-domain data retrieval, which addresses the problem
of retrieving data from one fixed target domain, and relevant to the query from another fixed source domain. This newly
proposed protocol is again significantly different from our UCDR. We summarize the differences here.

1. Open cross-domain visual search [27] proposes the cross-domain search among any two domains, provided they have
been used during training. In contrast, proposed UCDR focuses on cross-domain retrieval scenario, when the query
domain is not seen during training.

2. Proposed SnMpNet uses multiple domains of data (more than two) for training, as in [27]; however SnMpNet processes
all domains through one single network (feature-extractor + classifier), instead of the separate domain-specific prototyp-
ical networks that learn a common semantic space in [27]. This results in significant decrease in the number of trainable
parameters and model complexity.

3. [27] requires separate learning of a new semantic mapping function, whenever a new source / target domain emerges.
Since the proposed model in [27] requires a-priori knowledge about the query and target domains, it cannot be used
for UCDR protocol, without additional training. In contrast, SnMpNet can be seamlessly extended to the proposed
multi-domain query / target conditions, proposed in [27].

It can be noticed that the focus of our work is more towards the generalization ability of the network for unseen classes and
unseen domains, whereas [27] works towards generalizing retrieval in case of any query-search set pairs from seen-domains.
Thus our work is significantly different from [27].



(a) UcCDR for QuickDraw

(b) UCDR for Sketch

Figure 6: Top-8 Retrieved Images for UCDR and UcCDR protocols on DomainNet with Sketch being the unseen query
domain. Same query is considered for both the search set configurations. Green and Red borders indicate correct and
incorrect retrievals respectively. (best viewed in color)


