
A. Supplementary material

A.1. Implementation details

Dataset preparation. We infer object silhouettes using
PointRend [26] with an X101-FPN backbone, using their
pretrained model on COCO [30]. We set the object detec-
tion threshold to 0.9 to select only confident objects. As
mentioned in sec. 3, we discard object instances that are ei-
ther (i) too small (mask area < 962 pixels), (ii) touch the
borders of the image (indicator of possible truncation), or
(iii) collide with other detected objects (indicator of poten-
tial occlusion). For the object part segmentations, we use
the semi-supervised object detector from [17], which can
segment all 3000 classes available in Visual Genome (VG)
[27] while being supervised only on mask annotations from
COCO. Although this model was not conceived for object
part segmentation, we find that it can be used as a cost-
effective way of obtaining meaningful part segmentations
without collecting extra data or using co-part segmentation
models that require class-specific hyperparameter tuning,
such as SCOPS [18]. Specifically, since VG presents a
long tail of rare classes, as in [38] we found it beneficial
to first pre-select a small number of representative classes
that are widespread across categories (e.g. all land vehicles
have wheels, all animals have legs). We set the detection
threshold of this model to 0.2 and, for each image category,
we only keep semantic classes that appear in at least 25% of
the images, which helps eliminate spurious detections. On
our data, this leads to a number of semantic classes K ≈ 10
per image category (33 across all categories). The full list
of semantic classes can be seen in Fig. 5. To deal with po-
tentially overlapping part detections (e.g. the segmentation
mask of the door of a car might overlap with a window),
the output semantic maps represent probability distributions
over classes, where we weight each semantic class propor-
tionally to the object detection score. Additionally, we add
an extra class for “no class” (depicted in gray in our figures).
Mesh templates and remeshing. We borrow a selection
of mesh templates from [28] as well as meshes freely avail-
able on the web. In the experiments where we adopt multi-
ple mesh templates, we only use 2–4 meshes per category.
An important preliminary step of our approach, which is
performed even before the pose estimation step, consists in
remeshing these templates to align them to a common topol-
ogy. This has the goal of reducing their complexity (which
translates into a speed-up during optimization), removing
potential invisible interiors, and enabling efficient batching
by making sure that every mesh has the same number of ver-
tices/faces. Additionally, as mentioned in sec. 3.2, remesh-
ing is required for the semi-supervision loss term in the re-
construction model. We frame this task as an optimization
problem where we deform a 32 × 32 UV sphere to match
the mesh template. More specifically, we render each tem-

plate from 64 random viewpoints at 256 × 256 resolution,
and minimize the MSE loss between the rendered deformed
sphere and the target template in pixel space (LMSE). More-
over, we regularize the mesh by adding (i) a smoothness
loss Lflat, which encourages neighboring faces to have sim-
ilar normals, (ii) a Laplacian smoothing loss Llap with quad
connectivity (i.e. using the topology of the UV map as op-
posed to that of the triangle mesh), and (iii) an edge length
loss Llen with quad connectivity, which encourages edges to
have similar lengths. Lflat and Llen are defined as follows:

Lflat =
1

|E|
∑
i,j∈E

(1− cos θij)
2 (5)

Llen =
1

|UV |
∑
i∈U

∑
j∈V

‖vi+1,j − vi,j‖1 + ‖vi,j+1 − vi,j‖1
6

(6)

where E is the set of edges, cos θij is the cosine similarity
between the normals of faces i and j, and vi,j represents
the 3D vertex at the coordinates i, j of the UV map.
Finally, we weight each term as follows:

L = LMSE + 0.00001Lflat + 0.003Llap + 0.01Llen (7)

Additionally, in the experiments with multiple mesh tem-
plates, we add a pairwise similarity loss Lalign which penal-
izes large variations of the vertex positions between differ-
ent mesh templates (only within the same category):

Lalign =
1

N2
t

Nt∑
i=1

Nt∑
j=1

‖Vi −Vj‖2 (8)

where Vi is a matrix that contains the vertex positions of the
i-th mesh template (of shape 3 × Nv), and Nt is the num-
ber of mesh templates. This loss term is added to the total
loss with weight 0.001. Note that we use a non-squared L2
penalty for this term, which encourages a sparse set of ver-
tices to change between mesh templates.
We optimize the final loss using SGD with momentum (ini-
tial learning rate α = 0.0001 and momentum β = 0.9). We
linearly increase α to 0.0005 over the course of 500 itera-
tions (warm-up) and then exponentially decay α with rate
0.9999. We stop when the learning rate falls below 0.0001.
Additionally, we normalize the gradient before each update.
Fig. 9 shows two qualitative examples of remeshing.

Figure 9. Remeshing of the mesh templates. In this figure we show
two demos (one template for car and one for airplane).

Pose estimation. For the silhouette optimization step, we
initialize Nc = 40 camera hypotheses per image by uni-
formly quantizing azimuth and elevation (8 quantization

levels along azimuth and 5 levels along elevation). We
optimize each camera hypothesis using Adam [25] with
full-matrix preconditioning, where we set β1 = 0.9 and
β2 = 0.95. The implementation of our variant of Adam
as well its theoretical justification are described in the next
paragraph. We optimize each hypothesis for 100 iterations,
with an initial learning rate α = 0.1 which is decayed to
0.01 after the 80th iteration. After each iteration, we re-
project quaternions onto the unit ball. As a performance
optimization, silhouettes are initially rendered at 128×128
resolution, which is increased to 192×192 after the 30th
iteration and 256×256 after the 60th iteration. Finally, in
the settings where we prune camera hypotheses, we discard
the worst 50% hypotheses as measured by the intersection-
over-union (IoU) between projected and target silhouettes.
This is performed twice: after the 30th and 60th iteration.

Algorithm 1 Adam with full-matrix preconditioning.
Changes w.r.t. the original algorithm are highlighted .

1: require α (step size), β1, β2, ε
2: initialize time step t← 0
3: initialize parameters θ0 (d-dimensional col. vector)
4: initialize first moment m0 ← 0 (d-dimensional col. vector)
5: initialize second moment V0 ← 0 (d× d matrix)
6: repeat
7: t← t+ 1
8: gt ← ∇θft(θt−1) . gradient
9: mt ← β1mt−1 + (1− β1)gt . first moment

10: Vt ← β2Vt−1 + (1− β2) gtg
T
t . second moment

11: m̂t ← mt/(1− βt
1) . bias correction

12: V̂t ← Vt/(1− βt
2) . bias correction

13: θt ← θt−1 − α (V̂t + εId)
− 1

2 m̂t . update
14: until stopping criterion
15: return θt

Full-matrix preconditioning. Adam [25] is an established
optimizer for training neural networks. Its use of diago-
nal preconditioning is an effective trick to avoid storing an
O(d2) matrix for the second moments (where d is the num-
ber of learnable parameters), for which a matrix square root
and inverse need to be subsequently computed (an extra
O(d3) cost for each of the two operations). However, since
our goal is to optimize camera parameters, we observe that:

1. Optimizers with diagonal preconditioning are not rota-
tion invariant, i.e. they have some preferential directions
that might bias the pose estimation result.

2. Since each camera hypothesis comprises only 8 parame-
ters, inverting an 8× 8 matrix has a negligible cost.

Using a rotation invariant optimizer such as SGD (with or
without momentum) is a more principled choice as it ad-
dresses the first observation. However, based on our second
observation, we take the best of both worlds and modify

Adam to implement full-matrix preconditioning. This only
requires a trivial modification to the original implementa-
tion, which we show in alg. 1 (changes w.r.t. the original
algorithm are highlighted in green).
Semantic template inference. As mentioned in sec. 3.1,
the goal of this step is to infer a 3D semantic template for
each mesh template, given an initial (untextured) mesh tem-
plate, the output of the silhouette optimization step, and
a collection of 2D semantic maps. Recapitulating from
sec. 3.1, we solve the following optimization problem:

Li = ‖R(Vtpl,Ftpl,Ctpl; qi, ti, si, z0i)−Ci‖2 (9)

C∗tpl = min
Ctpl

1

Ntop

∑
i

Li (10)

Conceptually, our goal is to learn a shared semantic tem-
plate (parameterized using vertex colors) that averages all
2D semantic maps in vertex space. We propose the fol-
lowing closed-form solution which uses the gradients from
the differentiable renderer and requires only a single pass
through the dataset:

A =
∑
i

∇Ctpl(Li) (11)

(C∗tpl)k =
ε+ ak

Kε+
∑

j aj
(12)

where A is an accumulator matrix that has the same shape
as the Ctpl (the vertex colors), and ε is a small additive
smoothing constant that leads to a uniform distribution on
vertices that are never rendered (and thus have no gradient).
This operation can be regarded as projecting the 2D object-
part semantics onto the mesh vertices and computing a color
histogram on each vertex. We show a sample illustration in
Fig. 10.

Project Project
Initial 3D semantic

template

2D part
segmentation

Final template
(After 100 steps)

Figure 10. Semantic template inference, starting from an untex-
tured 3D mesh template (left-to-right progression). In this figure
we show a demo with two sample images, and the final result using
the top 100 images as measured by the IoU.

In section sec. 3.1 we explained that we compute the se-
mantic template using the top Ntop = 100 images as mea-

sured by the IoU, among those that passed the ambiguity
detection test (vagr < 0.3). To further improve the qual-
ity of the inferred semantic templates, we found it benefi-
cial to add an additional filter where we only select poses
whose cosine distance is within 0.5 (i.e. 45 degrees) of the
left/right side. Objects observed from the left/right side are
intrinsically unambiguous, since there is no complementary
pose that results in the same silhouette. Therefore, we fa-
vor views that are close to the left/right as opposed to the
front/back or top/bottom, which are the most ambiguous
views. Note that this filter is only used for the semantic
template inference step.
Generative model. We train the single-category recon-
struction networks (setting A) for 130k iterations, with a
batch size of 32, and on a single GPU. The multi-category
model (setting B) is trained for 1000 epochs, with a total
batch size of 128 across 4 GPUs, using synchronized batch
normalization. In both settings, we use Adam [25] (the orig-
inal one, not our variant with full-matrix preconditioning)
with an initial learning rate of 0.0001 which is halved at 1/4,
1/2, 3/4 of the training schedule. For the GAN, we use the
same hyperparameters as [39], except in the multi-category
model (setting B), which is trained with a batch size of 64
instead of the default 32. Furthermore, in setting B, and for
both models (reconstruction and GAN), we equalize classes
during mini-batch sampling. This is motivated by the large
variability in the amount of training images, as explained in
sec. 4.1, and as can also be seen in Table 3. Finally, as in
[39, 20, 10, 29], we force generated meshes to be left/right
symmetric.
Semantic mesh generation. In the setting where we gen-
erate a 3D mesh from a semantic layout in UV space, we
modify the generator architecture of [39]. Specifically, we
replace the input linear layer (the one that projects the la-
tent code z onto the first 8 × 8 convolutional feature map)
with four convolutional layers. These progressively down-
sample the semantic layout from 128 × 128 down to 8 × 8
(i.e. each layer has stride 2). The first layer takes as input
a one-hot semantic map (with K semantic channels) and
yields 64 output channels (128, 256, 512 in the following
layers). In these 4 layers, we use Leaky ReLU activations
(slope 0.2), spectral normalization, but no batch normaliza-
tion. We leave the rest of the network unchanged. In this
model, we also found it necessary to fine-tune the batch
normalization statistics prior to evaluation, which we do by
running a forward pass over the entire dataset on the run-
ning average model. As for the discriminator, we simply
resize the semantic map as required and concatenate it to
the input.

A.2. Additional results

Pose estimation. In Fig. 11, we provide more insight into
the geodesic distance metric, which measures the cosine

0.0 0.2 0.4 0.6 0.8 1.0
Geodesic distance

im

ag
es

Distribution of GD on "car" (multiple templates)
Step 1 (silhouette)
Step 2 (semantics)

0.0 0.2 0.4 0.6 0.8 1.0
Geodesic distance

im

ag
es

Distribution of GD on "car" (single template)
Step 1 (silhouette)
Step 2 (semantics)

0.0 0.2 0.4 0.6 0.8 1.0
Geodesic distance

im

ag
es

Distribution of GD on "airplane" (multiple templates)
Step 1 (silhouette)
Step 2 (semantics)

0.0 0.2 0.4 0.6 0.8 1.0
Geodesic distance

im

ag
es

Distribution of GD on "airplane" (single template)
Step 1 (silhouette)
Step 2 (semantics)

0.0 0.2 0.4 0.6 0.8 1.0
Geodesic distance

im

ag
es

Distribution of GD on "bird" (multiple templates)
Step 1 (silhouette)
Step 2 (semantics)

0.0 0.2 0.4 0.6 0.8 1.0
Geodesic distance

im

ag
es

Distribution of GD on "bird" (single template)
Step 1 (silhouette)
Step 2 (semantics)

Figure 11. Distribution of pose estimation errors on car, airplane,
and bird. We compare settings where we use multiple mesh tem-
plates (left) and a single template (right).

distance between the rotations predicted by our approach
(sec. 3.1) and SfM rotations. In particular, as opposed to
the results presented in Table 1 (which shows only the aver-
age), here we show the full distribution of errors. A distance
of 0 means that the two rotations match exactly, whereas a
distance of 1 (maximum value) means that the rotations are
rotated by 180 degrees from one another. On the analyzed
classes (car, airplane, and bird, for which we have SfM
poses), we can generally observe a bimodal distribution: a
majority of images where pose estimation is correct, i.e. the
GD is close to zero, and a small cluster of images where
the GD is close to one. This is often the case for ambigui-
ties: for instance, in cars we sometimes observe a front/back
confusion. As expected, exploiting semantics (step 2) mit-
igates this issue and increases the amount of available im-
ages (this is particularly visible on bird). We also note that,
for rigid objects such as car and airplane, the distribution
is more peaky, whereas for bird the tail of errors is longer,
most likely because pose estimation is more ill-defined for
articulated objects.
Qualitative results. We show extra qualitative results in
Fig. 14. In particular, we render each generated mesh from
two random viewpoints and showcase the associated tex-
ture and wireframe mesh. Additionally, in Fig. 12 we show
the most common failure cases across categories. We can

Figure 12. Failure cases for a variety of categories.

identify some general patterns: for instance, in vehicles we
sometimes observe incoherent textures (this is particularly
visible in truck due to the small size of this dataset). On
animals, as mentioned, we observe occasional failures to
model facial details, merged/distorted legs, and more rarely,
mesh distortions. To some extent, these issues can be miti-
gated by sampling from the generator using a lower trunca-
tion threshold (we use σ = 1.0 in our experiments), at the
expense of sample diversity.

Semantic templates. Fig. 13 shows the full set of learned
semantic templates for every category. Most results are co-
herent, although we observe a small number of failure cases,
e.g. in truck one or two templates are mostly empty and
are thus ineffective for properly resolving ambiguities. This
generally happens when the templates have too few images
assigned to them and explains why the multi-template set-
ting does not consistently outperform the single-template
setting.

Demo video. The supplementary material includes a video
where we show additional qualitative results. First, we
showcase samples generated by our models in setting A
and explore the latent space of the generator. Second, we
analyze the latent space of the model trained to generate
multiple classes (setting B), and discover interpretable di-
rections in the latent space, which can be used to control
shared aspects between classes (e.g. lighting, shadows). We
also interpolate between different classes while keeping the
latent space fixed, and highlight that style is preserved dur-
ing interpolation. Finally, we showcase a setting where we
generate a mesh from a hand-drawn semantic layout in UV
space, similar to Fig. 8.

Class Synsets Raw images Valid instances
Motorbike n03790512, n03791053, n04466871 4037 1351
Bus n04146614, n02924116 2641 1190
Truck n03345487, n03417042, n03796401 3187 1245

Car
n02814533, n02958343, n03498781,
n03770085, n03770679, n03930630,
n04037443, n04166281, n04285965

12819 4992

Airplane
n02690373, n02691156, n03335030,
n04012084 5208 2540

Sheep
n10588074, n02411705, n02413050,
n02412210 4682 864

Elephant n02504013, n02504458 3927 1434

Zebra
n02391049, n02391234, n02391373,
n02391508 5536 1753

Horse n02381460, n02374451 2589 664
Cow n01887787, n02402425 2949 861

Bear
n02132136, n02133161, n02131653,
n02134084 6745 2688

Giraffe n02439033 1256 349

Table 3. Synsets and summary statistics for our ImageNet data. For
each category, we report the number of raw images in the dataset,
and the number of extracted object instances that have passed our
quality checks (size, truncation, occlusion).

A.3. Dataset information

For our experiments on ImageNet, we adopt the synsets
specified in Table 3. Since some of our required synsets are
not available in the more popular ImageNet1k, we draw all
of our data from the larger ImageNet22k set.

A.4. Negative results

To guide potential future work in this area, we provide a
list of ideas that we explored but did not work out.
Silhouette optimization. For the silhouette optimization
step with multiple templates, before reaching our current
formulation, we explored a range of alternatives. In par-
ticular, we tried to smoothly interpolate between multiple
meshes by optimizing a set of interpolation weights along
with the camera parameters. This yielded inconsistent re-
sults across categories, which convinced us to work with a
“discrete” approach as opposed to a smooth one. We then
tried a reinforcement learning approach inspired by multi-
armed bandits: we initialized each camera hypothesis with a
random mesh template, and used a UCB (upper confidence
bound) selection algorithm to select the optimal mesh tem-
plate during optimization. This led to slightly worse results
than interpolation. Finally, we reached our current formula-
tion, where we simply replicate each camera hypothesis and
optimize the different mesh templates separately. We adopt
pruning to make up for the increase in computation time.
Re-optimizing poses multiple times. In our current for-
mulation, after the semantic template inference step, we use
the semantic templates to resolve ambiguities, but there is
no further optimization involved. Naturally, we explored
the idea of repeating the silhouette optimization step using
semantic information. However, we were unable to get this
step to work reliably, even after attempting with multiple

Motorbike Bus Truck Car Airplane

Bird Sheep Elephant Zebra Horse Cow Bear Giraffe

Wing

Engine

Fender

Seat

Handlebar

Door

Bumper

Grill

License plate

Wheel Window Windshield

MirrorLight

Headlight

Landing gear

Feather

Tail Leg

FootHoof

Neck

Mane Head

Face

MouthNoseCockpit

Trunk

Horn

Ear

Eye

Beak

Figure 13. Visualization of all the learned 3D semantic templates (2–4 per category). While most results are as expected, the figure
highlights some failure cases, e.g. in truck some templates have very few images assigned to them, which leads to incoherent semantics.

renderers (we tried both with DIB-R [4] and SoftRas [32]).
We generally observed that the color gradients are too unin-
formative for optimizing camera poses, even after trying to
balance the different components of the gradient (silhouette
and color). We believe this is a fundamental issue related to
the non-convexity of the loss landspace, which future work
needs to address. We also tried to smooth out the rendered
images prior to computing the MSE loss, without success.
Remeshing. Since target 3D vertices are known in this step,
we initially tried to use a 3D chamfer loss to match the mesh
template. This, however, led to artifacts and merged legs in
animals, and was too sensitive to initialization. We found it
more reliable to use a differentiable render with silhouette-
based optimization.

Figure 14. Additional qualitative results. We show three examples per category. Each example is rendered from two random views, and
the corresponding texture/wireframe mesh is also shown.

