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1. Model Architectures
The architectures of Conformer-Ti/B are detailed in

Tab. 5. Compared with Conformer-S, Conformer-Ti re-
duces channel number of the CNN branch by 1/4, and
Conformer-B increases channel number in the CNN branch,
head number of the multi-head attention module and the
embedding dimensions in the transformer branch by 1.5.

2. Attention-based Sampling
We also design a down-sampling-up-sampling strategy

based on the cross attention between feature maps and patch
embeddings.

Let h, w and c respectively denote the height, width,
channel of feature maps in a block (we omit the batch di-
mension here for simplicity), K and E respectively repre-
sent the number of patch embeddings (termed Pt) and chan-
nel dimension in the transformer branch. We split the fea-
ture maps into K patches (e.g., 14×14), termed Pc. The
dimension of each patch is n × c. After aligning the chan-
nel dimension by 1×1 convolution, the shape of each patch
is n× E.

For down sampling, the fusion between patch i in Pc

(denoted P i
c ) and patch j in Pt (denoted P j

t ) is formulated
as

P j
t = P j

t +Softmax

(
(P j

t Wq)(P
i
cWk)

T

√
E

)
(P i

cWv), (1)

where Wq,Wk,Wv ∈ RE×E are learned linear transfor-
mations which map the input P j

t to queries Q, keys K and
values V , respectively.

For up sampling, we re-use the attention weights in Eq. 1
and formulate the process as

P̃ i
c = P̃ i

c + Softmax

(
(P j

t Wq)(P
i
cWk)

T

√
E

)T

P̃ j
t , (2)
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Figure 1: Throughput and accuracy on ImageNet of Con-
former compared to DeiT [7], ResNet [2], RegNetY [5] and
EfficientNet [6]. The throughput is measured as the number
of images processed per second on a 32GB V100 GPU.

where P̃ i
c and P̃ i

c respectively denote that P i
c is processed

by convolution layers and P j
t by a transformer block ( Fig.

2 in the paper).

3. Inference Time
Classification. Following DeiT [7], we evaluate and
compare the throughput of various methods in Fig. 1. One
can see that our Conformer outperforms EfficientNet [6]
under comparable throughput.

Object detection and instance segmentation. Similarly,
we measure Frame Per Second (FPS) as the inference speed
and show the comparison in the Tab. 1. Combining Tab.3 in
the paper and Tab. 1 here, compared with ResNet-101 [2],
Conformer-S/32 has the comparable parameters, GFLOPs
and inference speed, but can outperform ResNet-101 by
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Method Backbone #Params (M) GLOPs FPS

FPN

ResNet-50 41.5 215.8 20.2
ResNet-101 60.5 295.7 15.9

Conformer-S/32 55.4 288.4 13.5
Conformer-S 54.2 404.6 8.2

Mask R-CNN

ResNet-50 44.2 268.9 13.2
ResNet-101 63.2 348.8 11.5

Conformer-S/32 58.1 341.4 10.9
Conformer-S 56.9 457.7 7.1

Table 1: Comparison of inference time. FPS is measured on
a 32GB V100 GPU with batchsize 1.

Variants Conformer-S w.o. Trans w.o. Conv w.o. FCU

Top-1 Acc. 83.4% 73.9% 79.8% 80.2%(-3.2%)

Table 2: Ablation study for different parts in Conformer-S.

Index #Params (M) MACs (G) Accuracy (%)

1 8.6 9.2 73.9
2 37.0 10.8 80.8
3 22.1 4.6 79.8
4 28.9 6.0 80.2

Conformer-S 37.7 10.6 83.4

Table 3: Performance of Conformer sub-structures. Where
the index 1, 2, 3 and 4 respectively represent the sub-
structures shown in Figs. 3(b), (c), (d) and (e).

a significant margin on both object detection and instance
segmentation tasks, which further demonstrates the poten-
tial to be a general backbone network.

4. More Ablation Studies

FCU’s Effect. We compare three important baseline vari-
ants, Conformer w.o. Transformer branch, Conformer w.o
Convolution branch, Conformer w.o FCU (just ensemble
CNN and ViT results). The results are summarized in
Tab. 2. In Tab. 2, one can see that without FCU the
performance drops by 3.2%, which suggests that the pro-
posed FCU performs vital effect on fusing local features
and global representations.

Residual Structure. As shown in Fig. 3 in the paper,
by considering FCUs as short connection we abstract Con-
former with a dual structure to a serial structure with resid-
ual connections. In other words, under different residual
connections, Conformer can degenerate to different sub-
structures. We test some sub-structures and report the cor-
responding performance in Tab. 3. From Tab. 3, one can
see that the proposed residual structure outperforms other
sub-structures.

Number of heads in MHSA. We conducted ablation study
with Conformer-Ti and concluded that the Top-1 accura-
cies on ImageNet val set respectively are 81.0%, 81.3%,
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Figure 2: Training Accuracy on the val set.

and 81.8% when the head numbers are 3, 6, and 12.

Fusion Interval. In the paper, we proposed a Feature Cou-
pling Unit to interact the local features and global represen-
tations in each block to progressively align the features to
fill the semantic gap. To validate whether fusion should be
done in each block, we conduct experiments on fusion in-
tervals and report the performance on ImageNet in Tab. 4.
From Tab. 4, one can see that smaller fusion intervals re-
port higher performance, implying that frequent interaction
facilities the representation learning.

Interval #Params (M) MACs (G) Accuracy (%)

1 37.7 10.6 83.4
2 34.2 9.2 82.9
4 32.3 8.4 82.2

Table 4: Comparison of fusion intervals. 1, 2 and 4 respec-
tively represent performing fusion every 1, 2 and 4 block(s).

5. Convergence speed

For the convolution operations introduced, Fig. 2, both
the CNN branch and the transformer branch of Conformer-
S significantly outperforms DeiT during the first 50 epochs.
This demonstrates the inductive bias of convolution facili-
ties the convergence of visual transformers.

6. Visualization

6.1. Feature Maps

Different from Fig. 1 in the paper, we summarize all the
channels of feature maps or patch embeddings and show
them in the Fig. 3. As shown in Fig. 3, Compared with
ResNet, Conformer’s CNN branch preserves clear infor-
mation of foreground. Compared with DeiT, Conformer’s
transformer branch retains more local details while depress-
ing the background.



CNNTransformer-Ti CNNTransformer-B

stage output CNN Branch fcuc Transformer Branch output CNN Branch fcuc Transformer Branch

c1
112×112 7×7, 64, stride 2 112×112 7×7, 64, stride 2

56×56 3×3 max pooling, stride 2 56×56 3×3 max pooling, stride 2

c2 56× 56,197


1×1, 16

3×3, 16

1×1, 64

 -

4×4, 384, stride 4

×1

56× 56,197


1×1, 96

3×3, 96

1×1, 384

 -

4×4, 384, stride 4

×1


MHSA-6, 384

1×1, 1536

1×1, 384




MHSA-9, 576

1×1, 2304

1×1, 576




1×1, 16

3×3, 16

1×1, 64

 [1× 1, 384] −→

×3


1×1, 96

3×3, 96

1×1, 384

 [1× 1, 576] −→

×3


MHSA-6, 384

1×1, 1536

1×1, 384




MHSA-9, 576

1×1, 2304

1×1, 576

- - - - - - - - - - - - - - - - - - - - - - - -
1×1, 16

3×3, 16

1×1, 64

 ←− [1× 1, 16]


1×1, 96

3×3, 96

1×1, 384

 ←− [1× 1, 96]

c3 28× 28,197


1×1, 32

3×3, 32

1×1, 128

 [1× 1, 384] −→

×4 28× 28,197


1×1, 192

3×3, 192

1×1, 768

 [1× 1, 576] −→

×4


MHSA-6, 384

1×1, 1536

1×1, 384




MHSA-9, 576

1×1, 2304

1×1, 576

- - - - - - - - - - - - - - - - - - - - - - - -
1×1, 32

3×3, 32

1×1, 128

 ←− [1× 1, 32]


1×1, 192

3×3, 192

1×1, 768

 ←− [1× 1, 192]

c4 14× 14,197


1×1, 64

3×3, 64

1×1, 256

 [1× 1, 384] −→

×3 14× 14,197


1×1, 384

3×3, 384

1×1, 1536

 [1× 1, 576] −→

×3


MHSA-6, 384

1×1, 1536

1×1, 384




MHSA-9, 576

1×1, 2304

1×1, 576

- - - - - - - - - - - - - - - - - - - - - - - -
1×1, 64

3×3, 64

1×1, 256

 ←− [1× 1, 64]


1×1, 384

3×3, 384

1×1, 1536

 ←− [1× 1, 384]

c5 7× 7,197


1×1, 64

3×3, 64

1×1, 256

 [1× 1, 384] −→

×1 7× 7,197


1×1, 384

3×3, 384

1×1, 1536

 [1× 1, 576] −→

×1


MHSA-6, 384

1×1, 1536

1×1, 384




MHSA-9, 576

1×1, 2304

1×1, 576

- - - - - - - - - - - - - - - - - - - - - - - -
1×1, 64

3×3, 64

1×1, 256

 ←− [1× 1, 64]


1×1, 384

3×3, 384

1×1, 1536

 ←− [1× 1, 384]

Parameters 23.5 M 83.3 M

MACs 5.2 G 23.3 G

Table 5: Architecture of CNNTransformer-Ti and CNNTransformer-B, where MHSA-6/9 denotes the multi-head self-
attention with heads 6/9 in transformer block and the fc layer is viewed as 1×1 convolution here. And in output column,
56×56,197 respectively mean the size of feature map is 56×56 and the number of embedded patches is 197.



Input ResNet-50 ResNet-101 Ours-S-CNN Ours-B-CNN DeiT-S DeiT-B Ours-S-Trans. Ours-B-Trans.

Figure 3: Feature maps. The feature maps are obtained by summarizing of all channels of the last convolutional layer or
transformer block. Ours-S-CNN denotes the CNN branch of Conformer-S model, and Ours-S-Trans. denotes the transformer
branch of Conformer-S. (Best viewed in color)



ResNet-101 ResNet-101 Conformer-S/32Conformer-S/32

Figure 4: Object detection examples on the minival set of MSCOCO [4], based on FPN [3].

ResNet-101 Conformer-S/32 ResNet-101 Conformer-S/32

Figure 5: Instance segmentation examples on the minival set of MSCOCO [4], based on Mask R-CNN [1].



6.2. Object Detection and Instance Segmentation

We respectively visualize object detection examples and
instance segmentation examples in Fig. 4 and Fig. 5. One
can see that Conformer, by taking advantage of global rep-
resentations, reports better results on large and/or slender
objects.
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