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This document provides additional experiments (Sec-
tion A), additional qualitative results (Section B), and im-
plementation details (Section C).

A. Additional experiments
We ablate the model and vary key parameters to evaluate

the influence of design choices on the quality of the results.
In particular, we present results on the effect of λKL (Sec-
tion A.1), batch size (Section A.2), number of layers (Sec-
tion A.3), and the rotation representation for SMPL pose
parameters (Section A.4).
A.1. Weight of the KL loss

As explained in Section 3.2 of the main paper, we em-
pirically show the importance of the weighting between the
reconstruction loss and the KL loss, controlled by λKL. Ta-
ble A.1 presents results for several values of λKL and we
find that there is a trade-off between diversity and realism
that is best balanced at λKL = 1e−5. We use this value in
all our experiments.
A.2. Influence of the batch size

As pointed out in Section 3.2 of the main paper, we find
that the batch size significantly influences the performance.
In Table A.2, we report results with batch sizes of 10, 20,
30, 40 for a fixed learning rate. The best performance is
obtained at 20, which is used in all our experiments.
A.3. Number of layers

We experiment with the number of Transformer layers
in both of our encoder and decoder architectures. Table A.3
summarizes the results. While 2 and 4 layers are sub-
optimal, the performance difference between 6 and 8 layers
is minimal. We use 8 layers in all our experiments.
A.4. SMPL pose parameter representation

In Table A.4, we explore different rotation representa-
tions for SMPL pose parameters. Note that we also pre-
serve the loss on the vertices LV in all rows. We find that
an axis-angle representation is difficult to train due to dis-
continuities, while others, such as quaternions, rotation ma-
trices and 6D continuous representations [9] are similar in

performance on NTU-13. On UESTC, we obtain the best
performance with the 6D representation and use this in all
our experiments.

B. Additional qualitative results
Figure A.1 demonstrates the diversity of our generated

motions for additional actions on NTU-13 and UESTC.
Video. We provide a supplemental video at [8] to illustrate
qualitatively the diversity in our generations and compare
with Action2Motion [3]. Moreover, we visualize the effect
of using a combined reconstruction loss defined both on ro-
tations and vertex coordinates, as opposed to a single loss.
We further present results of changing the duration of the
generations. We also inspect the latent space by interpo-
lating the noise vector. Finally, we present the denoising
capability of our model by encoding-decoding through our
latent space. This takes jerky motions and produces smooth
but natural looking motion.
Jitter removal for Action2Motion [3]. Besides the quan-
titative improvement of ACTOR over Action2Motion, we
observe qualitatively that Action2Motion generations have
significant temporal jitter. To investigate whether our im-
provement stems from this difference, we removed jitter
(using 1e filter) from Action2Motion generations (that we
obtained with their code). The result becomes worse (FID:
0.41→ 0.63, Acc: 94.3%→ 93.0%)1, perhaps because the
real data also has considerable jitter. This suggests that
our significant quantitative improvement can be attributed
to other factors such as more distinguishable actions.

C. Implementation details
Architectural details. For all our experiments, we set the
embedding dimensionality to 256. In the Transformer, we
set the number of layers to 8, the number of heads in multi-
head attention to 4, the dropout rate to 0.1 and the dimen-
sion of the intermediate feedforward network to 1024. As

1These two values for Action2Motion does not match Table 3 of the
paper because we use our own evaluation script and normalized the ground
truth shape by taking the average shape of SMPL.
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in GPT-3 [1] and BERT [2], we use Gaussian Linear Error
Units (GELU) [4] in our Transformer architecture.
Library credits. Our models are implemented with Py-
Torch [6], and we use PyTorch3D [5] to perform differ-
entiable conversion between rotation representations. We
integrate the differentiable SMPL layer using the PyTorch
implementation of SMPL-X [7].
Metrics. For the evaluation metrics, we use the implemen-
tations provided by Action2Motion [3].
Runtime. Training takes 24 hours for 2K epochs on NTU,
19h hours for 5K epochs on HumanAct12, and 33 hours for
1K epochs on UESTC on a single Tesla V100 GPU, using
4GB GPU memory with batch size 20.
Training with sequences of variable durations. As ex-
plained in Section 4.2 of the main paper, we finetune our
model with variable-durations after pretraining on fixed-
durations. For this, we restore the model weights from the
fixed-duration pretraining and finetune for 100 additional
epochs, with the same training hyperparameters.



UESTC NTU-13
FIDtr↓ FIDtest↓ Acc.↑ Div.→ Multimod.→ FIDtr↓ Acc.↑ Div.→ Multimod.→

Real 2.93±0.26 2.79±0.29 98.8±0.1 33.34±0.32 14.16±0.06 0.02±0.00 99.8±0.0 7.07±0.02 2.27±0.01

λKL = 1e−3 460.72±90.36 490.12±36.10 34.4±1.4 20.69±0.60 1.25±0.00 13.79±0.03 46.6±0.7 5.79±0.04 1.53±0.01

λKL = 1e−4 367.95±94.07 390.68±41.02 38.1±0.9 20.91±0.38 9.19±0.08 9.90±0.02 50.3±1.0 6.15±0.04 2.86±0.02

λKL = 1e−5 20.02±1.79 23.64±3.59 90.5±0.4 32.77±0.48 14.64±0.07 0.17±0.00 96.4±0.2 7.08±0.03 2.12±0.01

λKL = 1e−6 34.13±5.52 39.74±3.57 77.4±0.8 29.60±0.35 18.08±0.08 13.83±0.03 46.6±0.7 5.78±0.04 1.54±0.01

λKL = 1e−7 80.05±7.71 83.68±12.55 47.1±2.1 25.06±0.15 19.96±0.08 7.04±0.03 43.0±2.1 6.17±0.03 4.18±0.01

Table A.1: Weighting the KL loss term: To obtain a good trade-off between diversity and realism, it is important to find the balance
between the reconstruction loss term and the KL loss term in training. We set the weight λKL to 1e−5 in our training.

UESTC NTU-13
FIDtr↓ FIDtest↓ Acc.↑ Div.→ Multimod.→ FIDtr↓ Acc.↑ Div.→ Multimod.→

Real 2.93±0.26 2.79±0.29 98.8±0.1 33.34±0.32 14.16±0.06 0.02±0.00 99.8±0.0 7.07±0.02 2.27±0.01

Batch size = 10 283.28±94.40 309.15±33.90 39.7±1.5 23.24±0.43 15.73±0.11 13.95±0.03 46.2±0.6 5.77±0.05 1.56±0.01

Batch size = 20 20.02±1.79 23.64±3.59 90.5±0.4 32.77±0.48 14.64±0.07 0.17±0.00 96.4±0.2 7.08±0.03 2.12±0.01

Batch size = 30 23.37±2.95 26.06±1.28 89.7±0.5 32.07±0.58 14.59±0.05 0.18±0.00 96.2±0.2 7.07±0.04 2.13±0.01

Batch size = 40 25.36±1.82 28.22±2.16 89.2±0.7 32.22±0.44 14.52±0.10 0.26±0.00 95.4±0.1 7.06±0.05 2.10±0.01

Table A.2: Batch size: We observe sensitivity of the Transformer VAE training to different batch sizes and report performances at several
batch size values. We set this hyperparameter to 20 in our training.

UESTC NTU-13
FIDtr↓ FIDtest↓ Acc.↑ Div.→ Multimod.→ FIDtr↓ Acc.↑ Div.→ Multimod.→

Real 2.93±0.26 2.79±0.29 98.8±0.1 33.34±0.32 14.16±0.06 0.02±0.00 99.8±0.0 7.07±0.02 2.27±0.01

2-layers 34.66±2.58 37.17±3.53 84.9±0.6 30.87±0.36 15.83±0.08 0.24±0.00 94.6±0.2 7.07±0.03 2.22±0.01

4-layers 23.93±1.50 26.75±1.99 88.9±0.5 32.24±0.76 15.06±0.06 0.19±0.00 96.1±0.2 7.09±0.04 2.10±0.01

6-layers 21.68±1.78 24.92±2.09 89.0±0.6 32.61±0.41 15.31±0.05 0.16±0.00 96.6±0.1 7.09±0.04 2.11±0.01

8-layers 20.02±1.79 23.64±3.59 90.5±0.4 32.77±0.48 14.64±0.07 0.17±0.00 96.4±0.2 7.08±0.03 2.12±0.01

Table A.3: Number of layers: We use 8 layers in both the encoder and the decoder of the Transformer VAE. While the performance
degrades at 2 or 4 layers, we see marginal gains after 6 layers.

UESTC NTU-13
FIDtr↓ FIDtest↓ Acc.↑ Div.→ Multimod.→ FIDtr↓ Acc.↑ Div.→ Multimod.→

Real 2.93±0.26 2.79±0.29 98.8±0.1 33.34±0.32 14.16±0.06 0.02±0.00 99.8±0.0 7.07±0.02 2.27±0.01

Axis-angle 513.39±98.35 531.88±43.41 16.4±0.4 19.75±0.44 1.81±0.00 14.98±0.03 41.7±0.7 5.29±0.02 1.96±0.01

Quaternion 281.9±87.5 305.02±21.97 41.2±1.0 23.48±0.39 14.57±0.06 0.20±0.00 95.6±0.3 7.08±0.04 2.23±0.01

Rotation matrix 277.14±76.59 300.29±29.53 41.6±1.9 22.25±0.30 14.56±0.10 0.17±0.00 95.9±0.2 7.08±0.04 2.19±0.01

6D continuous 20.02±1.79 23.64±3.59 90.5±0.4 32.77±0.48 14.64±0.07 0.17±0.00 96.4±0.2 7.08±0.03 2.12±0.01

Table A.4: SMPL pose parameter representation: We investigate different rotation representations for the SMPL pose parameters. While
on NTU-13, all except axis-angle representations perform similarly, the best performing representation on UESTC is the 6D continuous
representation [9]. Note that the action recognition model which is used for evaluation is based on 6D rotations on UESTC and joint
coordinates on NTU-13. Therefore, we convert each generation to these representations before evaluation.



Figure A.1: Additional qualitative results: We provide more action categories from NTU-13 (top two actions: ‘Side kick’ and ‘Standing
up’) and UESTC (bottom two actions: ‘Punching and knee lifting’ and ‘Spinal stretching’). As in Figure 6 of the main paper, we show 3
generations per action. Our model generates different ways to perform the same action.
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