
1. Additional Analyses
In this section, we present a few additional analyses we

omitted from the main text due to space constraints. All our
analyses are conducted on iNat2019-CL and we report the
performance on all novel classes in iNat2019-CL.

1.1. Semi-supervised Few-shot Learning with
Coarsely-labeled Data

In the main text, we assume that no coarse labels (re-
gardless of reference or query examples) are revealed dur-
ing evaluation. However, it is also realistic to have the
coarse labels of the reference examples available while the
coarse labels of the query examples remain unknown. The
availability of this information opens up the possibility of
different inference procedures, including but not limited
to semi-supervised inference approaches. To show that
having a stronger representation can aid inference meth-
ods that leverage coarse labels, we develop a simple semi-
supervised learning technique that utilizes the coarse label
in Dref during inference. Specifically, for each class k with
coarse label p(k), we extend its reference set as follows:

1. We construct the prototype of the class ck
2. We randomly sample 100 examples with the same

coarse label p(k) from Dfine
rep and Dcoarse

rep respec-
tively to construct a candidate set of size 200.

3. Finally, we extend the reference set using the top 10
most similar examples to ck based on cosine similarity.

Once the reference set has been extended, we use the same
nearest prototype inference as in the main text. We call this
method nearest-neighbor extension (NN-Ext). For compar-
ison, we also consider another variant - NN-Ext-Any that
constructs the candidate set using all examples, not just
those with the same coarse label. We present the 1-shot
result in table 1.

Three key observations from the table stand out. First,
no matter what the representation, using the extended refer-
ence set leads to significantly better accuracy when com-
pared to the unexpanded reference set. Second, filtering
the candidate set using the coarse labels is crucial: without
such filtering, accuracy actually decreases across the board.
Third, among all the NN-Ext variants, the strongest is the
one which uses the representation produced by PAS.

1.2. Effect of the Amounts of Coarsely-labeled Data

Given that PAS leverages additional coarsely-labeled
data to yield better feature representations, its representa-
tion should perform better with more coarsely-labeled data.
To verify this intuition, we keep the amount of examples
from the novel-seen classes constant and vary the amount
coarse label available during representation learning; exam-
ples with coarse label are pseudo-labeled with the filtered

Repr. No Extension NN-Ext NN-Ext-Any

Baseline 20.46±.05 26.31±.04 16.02±.04

Repr-Coarse 19.89±.04 22.10±.03 15.72±.04

Self-training 22.94±.05 28.83±.05 17.81±.05

Repr-Multi 24.72±.05 29.57±.04 18.73±.05

PAS 25.21±.06 30.98±.05 19.47±.06

Upper Bound 27.30±.06 34.99±.05 20.85±.06

Table 1. Average 1-shot Top-1 Per Class Accuracy and 95% con-
fidence interval of NN-Ext and NN-Ext-Any across 1000 runs.
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Figure 1. Average 1-shot performance of PAS trained with various
amount of coarse labels.

teacher’s prediction whereas examples without the coarse
label are pseudo-labeled with the teacher’s prediction. We
plot the one-shot performance of PAS in figure 1. Indeed,
the coarse labels are key to PAS and PAS yields stronger
representations when more coarse labels are available.

1.3. Effect of Teachers with Stronger Representa-
tion

Given the superiority of Repr-Multi to the Baseline, one
might consider substituting the single-tasked teacher used
in PAS with a multi-tasked model. To experiment with this
idea, we replace the teacher in PAS with the classification
model trained to obtain Repr-Multi and report the perfor-
mance of the resulting student representation in table 2. The
performance of the students do not differ much so we opt to
use the single-tasked teacher for simplicity.

2. Full Results
We omitted the confidence intervals when reporting sev-

eral results in the main text for brevity so we intend to report
those results with confidence intervals in this section. Table
5 corresponds to table 2 in the main text, in which we report



Teacher k=1 k=5 all

Original 25.21±.05 43.27±.03 61.04±.00

Multi-tasked 25.42±.05 43.65±.03 61.11±.00

Table 2. Average k-shot Accuracy and 95 % confidence intervals
of PAS with different teachers.

the comparison between PAS and various representations.
Table 3 supplements table 4 in the main text in which we
investigate large reduction of base classes. Table 4 supple-
ments table 6 in the main text in which we investigate the
effect of unseen supercategories.

Large Reduction in Base Classes

Method k=1 5

Baseline - Original 20.46±.05 39.22±.03

PAS- Original 25.21±.05 43.27±.03

Baseline 14.19±.03 28.38±.02

PAS 21.80±.05 37.31±.03

Table 3. Average k-shot performance of different representations
evaluated on the original iNat2019-CL novel classes. PAS- Origi-
nal and Baseline - Original are trained on the original base dataset.
This table supplements table 5 in the main text.

Removing Some Coarse Labels

Method k=1 5

Baseline 18.15±.04 35.72±.03

Repr-Multi 21.92±.05 37.23±.03

PAS 23.14±.05 40.73±.03

Table 4. Average k-shot performance (on iNat2019-CL novel
classes) of various representations trained on a base dataset with
unseen supercategories. This table supplements table 6 in the main
text.

3. Training and Architectural Details
In this section, we describe the architecture used and the

training details of all the models in the paper.

3.1. Backbone Architecture

As mentioned in the main text, we use ResNet18 [2] as
our default backbone. The original ResNet18 is designed
for input images of resolution 224x224. Given that the res-
olution of images in our datasets are smaller (84x84 and
32x32), we modify the first convolutional layer by chang-
ing the kernel size to 3, stride to 1 and padding to 1. We

remove the first max pooling layer to avoid downsampling
of the images and the last ReLU activation as suggested in
[1].

3.2. Training Details

3.2.1 Representation Learning

In this section, we describe the training details used to train
all representations used in the main paper (i.e., Baseline,
Repr-Coarse, Self-training, Repr-Multi, Upper Bound). We
trained all representations using SGD with momentum 0.9
and weight decay set to 5e-4. In the first epoch of training,
we linearly increase the learning rate from zero to 0.1 and
then drop the learning rate by a factor of 10 every one-third
of the total number of training epochs. Models for iNat-
2019-CL (or its variants) and CIFAR-100-CL are trained for
300 epochs and models for tieredImageNet-CL are trained
for 90 epochs. All models are initialized randomly (includ-
ing both teachers and students). We augment the training
images with the random crop and random horizontal flip
when training the models.

3.2.2 FEAT and MetaOptNet

We modified the official implementation of MetaOptNet 1

and FEAT 2 released by the authors. Below are some modi-
fications we made:

MetaOptNet. We replaced the backbone architecture to
the ResNet18 architecture in section 3.1. We did not re-
move the last ReLU activation and removed global averag-
ing pooling to adopt similar architecture used in the original
implementations. We changed the number episodes per up-
date to 4 for iNat2019-CL and tieredImageNet-CL due to
hardware constraints.

FEAT. We replaced the backbone with the ResNet18 in
3.1 and did not remove the last ReLU activation. To pre-
train the backbone, we used linear classifier (following the
original implementation) and the same training procedures
in 3.2.

Regardless of the datasets, we trained all the models us-
ing the hyperparameters the author reported for the original
tieredImageNet and did not do hyperparameter tuning.

1MetaOpt: https://github.com/kjunelee/MetaOptNet
2FEAT: https://github.com/Sha-Lab/FEAT



iNat2019-CL

Novel Novel-seen Novel-unseen

Method k=1 5 all k=1 5 all k=1 5 all

Baseline 20.46±.05 39.22±.03 57.22±.00 28.68±.08 50.68±.04 67.25±.00 28.14±.08 50.37±.04 67.49±.00

Repr-Coarse 19.89±.04 29.32±.03 41.72±.00 33.50±.07 44.62±.04 57.62±.00 28.09±.07 40.32±.04 51.39±.00

Self-training 22.94±.05 42.17±.03 59.69±.00 33.18±.09 54.79±.04 69.85±.00 29.95±.08 52.11±.04 69.87±.00

Repr-Multi 24.72±.05 41.42±.03 57.34±.00 38.24±.09 56.77±.04 70.72±.00 32.03±.09 51.21±.04 65.88±.00

PAS 25.21±.05 43.27±.03 61.04±.00 39.06±.09 58.76±.04 73.63±.00 30.91±.08 51.85±.04 69.12±.00

Upper Bound 27.30±.06 47.98±.03 64.20±.00 41.64±.10 64.61±.03 75.36±.00 30.71±.09 53.77±.04 72.29±.00

tieredImageNet-CL

Novel Novel-seen Novel-unseen

Method k=1 5 all k=1 5 all k=1 5 all

Baseline 32.16±.09 53.36±.04 68.97±.00 41.22±.15 62.92±.06 77.19±.00 54.19±.19 75.50±.06 85.51±.00

Repr-Coarse 25.69±.07 37.19±.04 49.76±.00 38.14±.11 48.83±.07 62.55±.00 41.64±.16 55.70±.08 66.32±.00

Self-training 35.49±.10 57.26±.04 70.87±.00 48.12±.16 69.11±.06 80.60±.00 54.71±.19 75.89±.06 86.08±.00

Repr-Multi 37.16±.10 57.27±.04 70.20±.00 49.54±.16 68.38±.07 80.28±.00 53.28±.19 72.94±.07 83.31±.00

PAS 38.11±.10 59.08±.04 71.84±.00 50.60±.16 69.52±.07 80.40±.00 53.18±.19 74.68±.07 85.12±.00

Upper Bound 42.86±.11 65.68±.04 76.71±.00 60.03±.18 80.67±.05 87.14±.00 55.94±.20 76.96±.06 86.55±.00

CIFAR-100-CL

Novel Novel-seen Novel-unseen

Method k=1 5 all k=1 5 all k=1 5 all

Baseline 20.32±.09 33.24±.05 42.67±.00 25.50±.13 39.95±.07 50.45±.00 34.37±.22 51.80±.10 64.00±.00

Repr-Coarse 31.56±.10 38.90±.06 47.87±.00 45.74±.13 53.36±.08 63.10±.00 37.52±.25 50.65±.10 55.20±.00

Self-training 25.68±.10 42.43±.06 54.93±.00 32.96±.14 51.42±.08 63.30±.00 38.24±.22 57.51±.10 69.50±.00

Repr-Multi 34.99±.12 46.30±.06 55.07±.00 49.18±.16 60.51±.09 69.20±.00 39.00±.24 53.69±.09 61.20±.00

PAS 35.00±.11 48.42±.06 58.37±.00 48.57±.15 61.95±.08 72.65±.00 37.92±.22 54.91±.10 65.10±.00

Upper Bound 51.83±.17 64.97±.04 69.17±.00 73.75±.22 85.02±.02 85.45±.00 36.53±.23 56.25±.10 70.30±.00

Table 5. Average top-1 per class accuracy and 95% confidence intervals of various representations across 1000 runs. For each novel
categories, we use k=1, 5 and all reference examples. This table supplements table 2 in the main text.
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