4D-Net for Learned Multi-Modal Alignment - Supplemental Material

Vincent Casser
Waymo LLC

AlJ Piergiovanni
Google Research

1. Implementation Details

The models were implemented in TensorFlow. We
trained for 120 000 iterations using a batch size of 256, split
across 8 devices. The learning rate was set to 0.0015 using
a linear warmup for 6 000 steps followed by a cosine decay
schedule.

The anchor boxes had size of [4.7,2.1,1.7], and 2 rota-
tions (0 and 45 degrees) used at each feature map location.
For the PointPillar pseudo-image creation, we used a grid
size of (224,224, 1), an x-range of (—74.88,74.88) and the
same for y-range. The z-range was (—5,5). The max num-
ber of points per cell, N = 128. We used 10,000 pillars.

We applied data augmentation to the point clouds (ran-
dom 3D rotations and flips). The camera matrices were
also updated based on the augmentations so the projections
would still apply. No augmentation was used on the RGB
streams.

The PointPillars network used a feature dim of 64 for
the input points. The created pseudo-image had 224 x 224
shape. This was followed by 3 convolutional blocks with
4, 6, and 6 repeats. Each block consisted of a convolution,
batch norm and ReLU activation. This was followed by 3
deconvolutional layers which generate the predictions.

The RGB single frame network is a standard ResNet-
18. The video network is based on TinyVideoNetworks.
Specifically, we use a network that consists of 6 Residual
blocks, the structure is outlined in Table 1. Note that the first
two blocks apply both spatial and temporal convolutions to
the data (in that order).

We trained on the Waymo Open Dataset, which consists
of 1950 segments that are each 20 seconds long (about 200
frames), a total of 390 000 frames. The LiDAR data is pro-
cessed into point clouds grouped by timestamp and aligned
with the RGB frames. In most experiments, we take se-
quences of 16 frames as input and predict 3D boxes for the
last frame. We evaluate using the provided Waymo metrics
library. Before NMS, we filter out boxes with probability
less than 0.4 and boxes larger than 30m in length and 5m in
width and boxes smaller than 0.5m in length and width.

Michael Ryoo
Robotics at Google

Anelia Angelova
Google Research

Block Conv Size Channels Repeat Output Size
Input - - 16x224 x 224
Block 1 | 1x3x3 + 3x1x1 conv 32 1 8x112 x 112
Block 2 | 1x3x3 + 3x1x1 conv 64 1 4x56 x 56
Block 3 1x3x3 conv 128 4 2x28 x 28
Block 4 1x3x3 conv 256 4 2x14 x 14

Table 1. RGB Video Network structure used in 4D-Net. Note that
the sizes are shown assuming 16 frames at 224 x 224 input size.
For networks that used smaller inputs, the output sizes are each
step would be smaller, following the same scaling. Average pool-
ing was used after the convolution to reduce the spatial size. The
first two blocks apply both spatial and temporal convolutions in
that order.

Method | APL1 APL2 | AP30m AP30-50m AP 50m+
Base PointPillars 55.7 52.8 65.0 51.3 354
RGB 56.7 53.6 66.2 525 37.5
Spatial Avg 58.9 57.6 69.7 56.1 39.6
Spatial Transformer | 59.5 58.2 70.0 54.7 43.1
Projection 64.3 63.0 74.9 65.1 472

Table 2. Comparison of different spatial fusion methods.

2. Additional experimental results

Fusion Methods In the main paper, we focused on pro-
jection as the main method to fuse RGB and point cloud
data. Here, we also compare to several other methods. The
results are shown in Table 2.

Basic RGB. Here we flatten the RGB image feature out-
put into a 1-D tensor, and concatenate it to the point cloud
feature. This loses all spatial information and essentially
puts the entire image into each point.

Spatial Avg Pooling. As another baseline, we apply aver-
age spatial pooling to the image-based features R;, obtain-
ing a F;®-dimensional feature vector. We then concatenate
this to each feature in the PC-based features M, resulting in
a (XM, zM FM + FR) feature map. This is then passed
through the remaining CNN for classification. This pro-
vides the point cloud stream with some RGB information,
but it has no spatial information.

Spatial Transformer. We also tried using a spatial trans-
former [1] to crop regions around each projected point to
append to the PC feature. However, despite small improve-
ments, we found this to be extremely slow due to taking

many spatial crops with the transformer.

These baselines are compared with the proposed Projec-
tion method which is in Table 2 of the main paper. The
experiments are conducted in the same conditions as the
Projection method in the main paper. The Basic PointPil-
lars (also in Table 2 of the main paper) does not have an
RGB input and is included for reference only.

3. Additional Visualizations

In Figure 1 we show more visualizations of the predic-
tions of the 4D-Net on the Waymo Open Dataset.

References

[1] Max Jaderberg, Karen Simonyan, Andrew Zisserman, and
Koray Kavukcuoglu. Spatial transformer networks. arXiv
preprint arXiv:1506.02025, 2015. 1

[2] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien
Chouard, Vijaysai Patnaik, Paul Tsui, James Guo, Yin Zhou,
Yuning Chai, Benjamin Caine, et al. Scalability in perception
for autonomous driving: Waymo open dataset. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2446-2454, 2020. 3

Figure 1. 4D-Net predictions on a scene in the Waymo Open Dataset [2]. Individual instances are shown in green (here) or in different
colors in the figures below. Red boxes indicate errors (dashed lines: FN, solid lines: FP). The front camera (central image) is the only one
used in our work presently, the others are included for visualization purposes. Note that any misalignments in the camera view are due to
projection, not by inaccuracies in the predictions.

Figure 2. Failure cases examples: In these two challenging cases, the central image (stream) is not sufficient and a vehicle is missed.

