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In this supplementary material, we provide further im-
plementation details for reproducibility, as well as addi-
tional qualitative and quantitative results.

A. Implementation

A.1. Practical Details

Our framework is implemented using PyTorch [21],
for seamless integration with optimization and recognition
methods. Inference and training procedures are performed
on a GPU-enabled backend machine (with two NVIDIA
Tesla V100-SXM2 cards). Differentiable ray-tracing and
3D data processing are performed by the Redner tool [18]
kindly provided by Li et al. [19]. Optional learning-based
post-processing is performed by two convolutional layers,
resp. with 32 filters of size 5×5 and 32 filters of size 1×1.
The first layer takes as input a 3-channel image composed
of the simulated depth map, as well as its noise-free depth
map and shadow map (all differentiably rendered by DDS).

When optimizing DDS (in a supervised or unsupervised
manner), we use Adam [12] with a learning rate of 0.001
and no weight decay. For supervised optimization, we opt
for a combination of Huber loss [10] and gradient loss [11]
(the latter comparing the pseudo-gradient maps obtained
from the depth scans by applying Sobel filtering). For
unsupervised optimization, we adopt the training scheme
and losses from PixelDA [2], i.e., training DDS against a
discriminator network and in collaboration with the task-
specific recognition CNN.

A.2. Computational Optimization

On top of the solutions mentioned in the main paper w.r.t.
reducing the computational footprint of DDS, we further
optimize our pipeline by parallelizing the proposed block-
matching algorithm. Since the correspondence search per-
formed by our method is purely horizontal (c.f . horizontal
epipolar lines), compared images Ic and Io can be split into
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m pairs {Ic,j , Io,j}mj=1 with:

Ic =


Ic,0
Ic,1
...
Ic,m

 ; Io =


Io,0
Io,1
...
Io,m

 , (1)

i.e., horizontally splitting the images into m pairs. The
stereo block-matching procedure can be performed on each
pair independently, enabling computational parallelization
(e.g., fixing m as the number of available GPUs). Note that
to account for block size w×w, each horizontal splits Ic,j+1

and Io,j+1 overlaps the previous ones (resp. Ic,j and Io,j)
by w pixels (for notation clarity, Equation 1 does not ac-
count for this overlapping).

A.3. Simulation Parameters

The results presented in the paper are obtained by pro-
viding the following simulation parameters to DDS (both as
fixed parameters to the off-the-shelf instances and as initial
values to the optimized versions):

Microsoft Kinect V1 Simulation:

• Image ratio H
W = 4

3 ;
• Focal length fλ = 572.41px;
• Baseline distance b = 75mm;
• Sensor range [zmin, zmax] = [400mm, 4000mm];
• Block size w = 9px;
• Emitted light intensity factor ηc = 1.5× 106;
• Shadow bias ξ = 5mm;
• Softargmax temperature parameter β = 15.0;
• Subpixel refinement level nsub = 2;

Matterport Pro2 Simulation:

• Image ratio H
W = 5

4 ;
• Focal length fλ = 1075.43px;
• Baseline distance b = 75mm;
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Figure S1: Comparison of block-matching solutions applied to depth regression from stereo color images. Our soft
block-matching algorithm is compared to Konolige’s one [13, 14] often used in depth simulation.

• Sensor range [zmin, zmax] = [400mm, 8000mm];
• Block size w = 11px;
• Emitted light intensity factor ηc = 1.5× 1012;
• Shadow bias ξ = 1mm;
• Softargmax temperature parameter β = 25.0;
• Subpixel refinement level nsub = 4;

Note that device-related parameters come from the sen-
sors’ manufacturers or previous Kinect studies [16, 15].
Other parameters have been manually set through em-
pirical evaluation. For the structured-light pattern, we
use the Kinect pattern image reverse-engineered by Re-
ichinger [23].

B. Additional Results
B.1. Application to RGB Stereo Matching

Figure S1 provides a glimpse at how the proposed differ-
entiable block-matching algorithm can perform in a stand-
alone fashion and be applied to problems beyond the stereo
analysis of structured-light patterns. In this figure, our al-
gorithm is applied to the depth measurement of complex
stereo color images (without its sub-pixel refinement step,
since it relies on ray-tracing). We compare it to the stan-
dard stereo block-matching algorithm proposed by Kono-
lige [13, 14] and used by previous depth sensor simula-
tions [5, 22]. Stereo color images come from the Middle-
bury Stereo dataset [25, 24, 8]. We can appreciate the rela-
tive performance of the proposed method, in spite of its ex-
cessive quantization (hence the additional sub-pixel refine-
ment proposed in the paper and highlighted in Figure S2)
and approximations for higher-frequency content. We can

also observe artifacts for pixels with ambiguous correspon-
dences due to the softargmax-based reduction performed by
our method (whereas Konolige’s algorithm yields null val-
ues when the correspondences are too ambiguous).

B.2. Realism Study

Qualitative Comparison. Additional Figure S2 depicts
the control over the discrepancy/depth granularity provided
by the hyper-parameter Nsub (level of subpixel refinement).
Incidentally, this figure also shows the impact of non-
modelled scene properties on the realism of the simulated
scans. The 3D models of the target scenes provided by
the dataset authors [1], used to render these scans, do not
contain texture/material information and have various geo-
metrical defects; hence some discrepancies between the real
and synthetic representations (e.g., first row of Figure S2:
the real scan is missing data due to the high reflectivity of
some ceiling elements; an information non-modelled in the
provided 3D model). As our pipeline is differentiable not
only w.r.t. the sensor’s parameters but also the scene’s ones,
it could be in theory used to optimize/learn such incorrect
or missing scene properties. In practice, this optimization
would require careful framing and constraints (worth its
own separate study) not to computationally explode , es-
pecially for complex, real-life scenes.

Figure S3 contains randomly picked synthetic and real
images based on the 2D-3D-Semantic dataset [1]. We
can observe how the DepthSynth method proposed by
Planche et al. [22] tends to over-induce noise, sometimes
completely failing at inferring the depth through stereo
block-matching. It may be due to the choice of block-
matching algorithm [13, 14], as the authors rely on a pop-
ular but rather antiquated method, certainly not as robust
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Figure S2: Impact of proposed differentiable sub-pixel refinement on depth quantization, depicted over the 2D-3D-
Semantic dataset [1].

synthetic RGB clean synthetic 2.5D (z-buffer) DepthSynth BlenSor DDS (out-of-the-box) DDS (trained) real target (Matterport Pro2)

Figure S3: Qualitative comparison of simulated scans. Synthetic depth images rendered from reconstructed 3D indoor
scenes of the 2D-3D-Semantic dataset [1], compared to real scans from the Matterport Pro2 sensor. Note that the Pro2
device relies on 3 stacked depth sensors, hence the high accuracy and reduced shadow noise.
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Figure S4: Experimental setup for quantitative noise
study of a depth sensor, as proposed by Landau et al. [16].

as the (unspecified) algorithm run by the target Matterport
Pro2 device. Our own block-matching solution is not much
more robust (c.f . Figure S1) and also tends to over-induce
noise in the resulting depth images. Until a more robust dif-
ferentiable solution is proposed, DDS can, however, rely on
its post-processing capability to compensate for the block
mismatching and to generate images that are closer to the
target ones, as shown in Figure S3 (penultimate column).
As for the BlenSor simulation [5], its image quality is qual-
itatively good, though it cannot be configured, e.g., to re-
duce the shadow noise (the tool proposes a short list of
pre-configured sensors that it can simulate). Moreover, for
reasons unknown, the open-source version provided by the
authors fails to properly render a large number of images
from the 2D-3D-S scenes, resulting in scans missing a large
portion of the content (c.f . fourth row in Figure S3). This
probably explains the low performance of the CNN for se-
mantic segmentation trained over BlenSor data. Finally, un-
like static simulations, the proposed solution can learn to
tune down its inherent noise to model more precise sensors
such as the multi-shot Matterport device (composed of 3
sensors).

Quantitative Comparison. Figure S4 illustrates the ex-
perimental setup described in Subsection 4.1 of the paper
w.r.t. noise study. We consider a flat surface placed at dis-
tance z from the sensor, with a tilt angle α w.r.t. the focal
plane (with

−→
f its normal).

Note that for this experiment, we use the experimental
data collected and kindly provided by Landau et al. [16].

B.3. Applications to Deep Learning

Table S1 extends the results presented in the paper (Ta-
ble 1), considering the cases when annotations are provided
for the subset of real training images. In such a scenario,
the segmentation method can be supervisedly trained either

Table S1: Comparative study w.r.t. training usage (ex-
tending study in Table 1), measuring the accuracy of a
CNN [6, 26, 27] performing semantic segmentation on real
2.5D scans from the indoor 2D-3D-S dataset [1], as a func-
tion of the method used to render its training data and as a
function of real annotated data availability (↑ = the higher
the value, the better).

Train.
Data

Source

Mean Intersection-Over-Union (mIoU)↑ Pixel
Acc.↑

bo
ok

c.
cei
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air
clu
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do
or

floo
r

tab
le

wall

clean .003 .018 .002 .087 .012 .052 .091 .351 35.3%

BlenSor [5] .110 .534 .119 .167 .148 .561 .082 .412 51.6%
DepthS. [22] .184 .691 .185 .221 .243 .722 .235 .561 65.3%

DDS .218 .705 .201 .225 .240 .742 .259 .583 62.9%
DDS (train.) .243 .711 .264 .255 .269 .794 .271 .602 69.8%

real .135 .770 .214 .277 .302 .803 .275 .661 73.5%

BlenSor [5] + real .143 .769 .213 .275 .306 .817 .271 .636 73.6%
DepthS. [22] + real .222 .767 .234 .297 .325 .812 .273 .659 75.8%

DDS + real .279 .775 .245 .299 .356 .815 .280 .659 76.7%

purely on the (rather limited) real data, or on a larger, more
varied mix of real and synthetic data. The additional last
three rows in Table S1 present the test results considering
the latter option. We can observe how the CNN instances
trained on such larger datasets—and more specifically the
CNN instance trained on a mix of real and DDS data—are
more accurate than the instance trained purely on real data.

Similarly, Table S2 extends the results presented in the
paper (Table 2) w.r.t. training of a CNN for instance clas-
sification and pose estimation over the Cropped LineMOD
dataset [7, 2, 28]. Besides specifying the number of train-
able parameters |ΦD| that compose discriminator networks
(for adversarial domain adaptation methods), we highlight
the impact of adding pseudo-realistic clutter to the virtual
scenes before rendering images, i.e., adding a flat surface
as ground below the target object, and randomly placing
additional 3D objects around it. Intuitive, the benefit of sur-
rounding the target 3D objects with clutter (for single-object
image capture) to the realism of the resulting synthetic im-
ages has already been highlighted by previous studies on
RGB images [3, 9].

Our results presented in Table S2 extend these conclu-
sions to the 2.5D domain, with a sharp accuracy increase
of the resulting recognition models when adding pseudo-
realistic clutter to the virtual scenes. This also highlights
the importance, in visual simulation, of not only modeling
realistic sensor properties but also of properly setting up the
virtual scenes (c.f . discussion in previous Subsection B.2).
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Table S2: Comparative and ablative study (extending study in Table 2), measuring the impact of unsupervised domain
adaptation, sensor simulation (Sim), and domain randomization (DR, i.e., using randomized 2.5D transforms to the rendered
images c.f . [29, 28] or adding random 3D clutter to the virtual scenes before rendering) on the training of a CNN [4] for
depth-based instance classification and pose estimation on the Cropped LineMOD dataset [7, 2, 28].

3D Clutter
in Scene

Augmentations Sim/DA Req. Class.
Accur.↑

Rot.
Error↓offline online Xr

trn |Φ| |ΦD|

Basic

21.3% 91.8◦

DR 39.6% 73.3◦

✓ 46.8% 67.0◦

✓ DR 70.7% 53.1◦

D
om

.A
da

p.

PixelDA
[2] GAN ✓ 1.96M 693k 65.8% 56.5◦

✓ GAN ✓ 1.96M 693k 85.7% 40.5◦

DRIT++ [17]

GAN ✓ 12.3M 33.1M 36.2% 91.9◦

GAN DR ✓ 12.3M 33.1M 62.5% 89.1◦

✓ GAN ✓ 12.3M 33.1M 68.0% 60.8◦

✓ GAN DR ✓ 12.3M 33.1M 87.7% 39.8◦

DeceptionNet [28]
DR 1.54M 37.3% 59.8◦

✓ DR 1.54M 80.2% 54.1◦

Se
ns

or
Si

m
ul

at
io

n

DepthSynth [22]

Sim 17.1% 87.5◦

Sim DR 45.6% 65.4◦

✓ Sim 71.5% 52.1◦

✓ Sim DR 76.6% 45.4◦

BlenSor [5]

Sim 14.9% 90.1◦

Sim DR 45.6% 65.3◦

✓ Sim 67.5% 63.4◦

✓ Sim DR 82.6% 41.4◦

DDS
(untrained)

Sim 15.6% 91.6◦

Sim DR 50.0% 68.9◦

✓ Sim 69.7% 67.6◦

✓ Sim DR 89.6% 39.7◦

C
om

bi
ne

d

DDS

Sim ✓ 4 693k 21.3% 80.9◦

Sim DR ✓ 4 693k 51.6% 63.3◦

Sim+conv ✓ 2,535 693k 22.6% 78.7◦

Sim+conv DR ✓ 2,535 693k 54.3% 60.4◦

✓ Sim ✓ 4 693k 81.2% 49.1◦

✓ Sim DR ✓ 4 693k 90.5% 39.4◦

✓ Sim+conv ✓ 2,535 693k 85.5% 45.4◦

✓ Sim+conv DR ✓ 2,535 693k 93.0% 31.3◦

DDS + (X,Y )
r
trn ✓ Sim+conv DR ✓ 2,535 693k 97.8% 25.1◦

(X,Y )
r
trn ✓ ✓ 95.4% 35.0◦
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