
Supplementary Material: Active Domain Adaptation via Clustering
Uncertainty-weighted Embeddings

1. Appendix

Contents
1.1. Performance of CLUE on Standard AL . . . 1
1.2. Analyzing CLUE: When do gains saturate? . 1
1.3. Comparing CLUE and BADGE 1
1.4. Dataset details 2
1.5. Code and Implementation Details 3

1.5.1 Baseline Implementations 3
1.6. CLUE: Qualitative Analysis 4
1.7. Extended Description of the CLUE Objective 5
1.8. Full performance plots 5
1.9. Future Work 6

1.1. Performance of CLUE on Standard AL

While CLUE is designed as an Active DA strategy, we
nevertheless study its suitability for traditional active learn-
ing in which models are typically trained from “scratch”. We
benchmark its performance against competing methods in
two settings: Finetuning from an ImageNet [18] initialization
on the Clipart→Sketch shift from DomainNet, following the
same experimental protocol we use for Active DA (but set
softmax temperature T= 1.0 as uncertainty is less reliable
when learning from scratch), and the standard SVHN bench-
mark used for active learning [1]. For AL on SVHN, we
match the setting in Ash et al. [1], initializing a ResNet18 [7]
CNN with random weights and perform 100 rounds of active
learning with per-round budget of 100. As summarized in
Figure 2a, on DomainNet CLUE significantly outpeforms
prior work. On SVHN (Fig 2b), CLUE is on-par with state-
of-the-art AL methods, and statistically significantly better
than uniform sampling over most rounds.

1.2. Analyzing CLUE: When do gains saturate?

Due to the computational expense of running active do-
main adaptation on multiple shifts with a large CNN
(ResNet34 [7]) on a large dataset (DomainNet [15]), in the
main paper we restrict ourselves to 10 rounds with a per-
round budget of 500. As a check on when performance gains
saturate, we benchmark performance of CLUE + MME [19]
on Clipart→Sketch for 40 rounds with per-round budget
of 500 (= 20k labels in total), against a few representative

0 5000 10000 15000 20000
Labels from sketch Train

36

40

44

48

52

sk
et

ch
 T

es
t A

cc
ur

ac
y

Clipart Sketch

uniform+FT
BADGE+FT
uniform+MME
CLUE (Ours) + MME

Figure 1: C→S: When do gains with CLUE saturate?

baselines: BADGE [1]+FT (state-of-the-art AL method with
finetuning), uniform+MME [19] (uniform sampling with
state-of-the-art semi-supervised DA method), and uniform
+ FT (uniform sampling with finetuning). Results are pre-
sented in Fig. 1. As seen, CLUE’s strongest performance im-
provements are seen in the initial stages of training, where it
significantly outperforms competing methods. Performance
then begins to saturate roughly around the 15k labels mark,
and performance differences across methods narrow.

1.3. Comparing CLUE and BADGE

Both CLUE and BADGE are hybrid label acqusition strategies
that combine uncertainty and diversity sampling. We now
elaborate upon the differences between the two:
Conceptual comparison. CLUE and BADGE conceptually
differ in 3 key ways: i) Feature space. BADGE: Operates
in “gradient embedding” space computed as an outer prod-
uct of penultimate-layer instance embeddings and model
output scores. CLUE: Operates on penultimate-layer embed-
dings scaled by model uncertainty. ii) Uncertainty measure.
BADGE: Uses gradient wrt model’s top-1 prediction. CLUE:
Uses predictive entropy. iii) Diversity measure. BADGE:
Runs KMeans++ in gradient embedding space. CLUE: Runs
uncertainty-weighted K-Means on instance embeddings and
selects nearest neighbors to centroids.

These design choices influence both BADGE’s effective-
ness and efficiency. For D−dim. penultimate-layer embed-
dings and C−dim. (for C classes) output scores, each gradi-
ent embedding has CD-dims – on DomainNet, this is 176k-

1

0 1000 2000 3000 4000 5000
Labels from sketch Train

0

6

12

18

24

30

sk
et

ch
 T

es
t A

cc
ur

ac
y

C S: FT from ImgNet

uniform
entropy
margin
coreset
BADGE
CLUE

(a) C→S: 10 rounds,B = 500

0 2000 4000 6000 800010000
Labels from svhn Train

10
20
30
40
50
60
70
80
90

sv
hn

 T
es

t A
cc

ur
ac

y
(%

)

4000 6000 8000 10000
Labels from svhn Train

78
80
82
84
86
88
90

sv
hn

 T
es

t A
cc

ur
ac

y
(%

)

uniform BADGE margin entropy coreset CLUE

(b) SVHN: 100 rounds, B= 100

Figure 2: Active learning performance of CLUE on DomainNet C→S (finetuning from ImageNet initialization) and SVHN (finetuning from
scratch). CLUE significantly outperforms state-of-the art active learning methods in the first case and performs on-par in the second.

dims with a ResNet34 and ∼1.4 million dims with AlexNet.
In addition to being expensive to compute, KMeans++ in
such high dimensional spaces is less effective as distance
measures becomes less reliable. In comparison, CLUE op-
erates in a significantly lower-dimensional feature space
(512/4096 for ResNet34/AlexNet). We believe these differ-
ences lead to CLUE being more computationally efficient
(Tab. 3 in main paper) and effective on average than BADGE
(Tab. 1-2 in main paper), especially on hard shifts (e.g. S→P,
C→Q in Tab. 1 of main paper).

AL method SVHN → MNIST DSLR → Amazon
30 60 150 30 60 150

BADGE 89.9±0.9 93.1±0.2 96.4±0.1 58.2±1.2 61.6±0.2 71.3±1.4

CLUE 91.1±0.5 93.9±0.5 96.2±0.2 60.2±1.2 65.6±0.5 72.7±0.9

Table 1: Active DA acc. and 1 std dev over 3 runs with MME.

Empirical comparison. On DomainNet, CLUE achieves
small but consistent gains over BADGE (Tab. 1 in main pa-
per) – with MME, across 4 diverse shifts × 10 rounds = 40
settings, and accounting for error bars, CLUE does as well
or better than BADGE on 38/40 (better on 24/40). On other
benchmarks, we sometimes observe large gains on other
benchmarks (+5.2% on DIGITS at B=30, Tab. 2). However,
at later rounds on SVHN→MNIST and DSLR→Amazon,
BADGE and CLUE perform similarly. With MME, and after
including error bars, CLUE matches or outperforms BADGE
on 24/30 (DIGITS) and 10/10 (Office) settings (Tab. 1 shows
3 budgets), with BADGE doing slightly better from rounds
20-24 on DIGITS. We conjecture this is because gradient em-
bedding dimensionality on DIGITS for 10-way classification
is low, which leads to BADGE being as effective.

1.4. Dataset details

DomainNet. For our primary experiments, we use the Do-
mainNet [15] dataset that consists of 0.6 million images

SVHN

(a)

MNIST

(b)

Figure 3: DIGITS qualitative examples

spanning 6 domains, available at http://ai.bu.edu/M3SDA/.
For our experiments, we use 4 shifts from 5 domains: Real,
Clipart, Sketch, Painting, and Quickdraw. Table 2 summa-
rizes the train/test statistics of each of these domains, while
Fig. 4 provides representative examples from each. As mod-
els use ImageNet initialization, we avoid using Real as a
target domain.

Real Clipart Painting Sketch Quickdraw

Train 120906 33525 48212 50416 120750
Test 52041 14604 20916 21850 51750

Table 2: DomainNet [15] train/test statistics

DIGITS. We present results on the
SVHN [12]→MNIST [10] domain shift. Both datasets
consist of images of the digits 0-9. SVHN consists of 99289
(73257 train, 26032 test) RGB images whereas MNIST
contains 70k (60k train, 10k test) grayscale images. Fig. 3
shows representative examples.

http://ai.bu.edu/M3SDA/

1.5. Code and Implementation Details

We use PyTorch [13] for all our experiments. Most exper-
iments were run on an NVIDIA TitanX GPU.
CLUE. We use the weighted K-Means implementation in
scikit-learn [14] to implement CLUE. Cluster centers are ini-
tialized via K-means++ [3]. The implementation uses the
Elkan algorithm [6] to solve K-Means. For n objects, k clus-
ters, and e iterations (= 300 in our experiments), the time
complexity of the Elkan algorithm is roughly O(nke) [4],
while its space complexity is O(nk).
DomainNet experiments. We use a ResNet34 [7] CNN
architecture. For active DA (round 1 and onwards), we use
the Adam [9] optimizer with a learning rate of 10−5, weight
decay of 10−5 and train for 20 epochs per round (with an
epoch defined as a complete pass over labeled target data)
with a batch size of 64. For unsupervised adaptation (round
0), we use Adam with a learning rate of 3x10−7, weight
decay of 10−5, and train for 50 epochs. Across all adaptation
methods, we tune loss weights to ensure that the average
labeled loss is approximately 10 times as large as the average
unsupervised loss. We use random cropping and random
horizontal flips for data augmentation. We set loss weights
for supervised source training λS = 0.1, supervised target
training λT = 1, and min-max entropy (for MME) λH = 0.1.

0 1000 2000 3000 4000 5000
Labels from sketch Train

42

45

48

51

54

sk
et

ch
 V

al
 A

cc
ur

ac
y

clipart sketch

T=0.01
T=0.1
T=0.5
T=1.0
T=2.0
T=5.0

Figure 5: C→S: Tuning soft-
max temperature with a small
target validation set (1% data).

Tuning softmax tempera-
ture. In Active DA, it is un-
realistic to assume access
to a large validation set on
the target to tune hyperpa-
rameters. To tune softmax
temperature T for CLUE
that trades off uncertainty
and diversity, we thus cre-
ate a small heldout valida-
tion set of just 1% of target
data (482 examples) on the
Clipart→Sketch shift, and
perform a grid search over
temperature values. We se-

lect T= 0.1 based on its relatively consistent performance
(Fig. 5) across rounds on C→S, and use it across shifts on
DomainNet. We reiterate that T is an optional hyperparam-
eter that may be tuned for a performance boost if a small
validation set is available. As demonstrated in Sec 4.5 of
the main paper, CLUE achieves SoTA results even with the
default value of T = 1.0. Further, we also find that T gener-
alizes across shifts, suggesting that in practical scenarios it
may be sufficient to tune it only on a single validation shift
within a benchmark.
DIGITS experiments. We use the modified LeNet architec-
ture proposed in Hoffman et al. [8] and exactly match the
experimental setup in AADA [22]. We use the Adam [9]
optimizer with a learning rate of 2x10−4, weight decay of
10−5, batch size of 128, and perform 60 epochs of training
per-round. We halve the learning rate every 20 epochs. We
set loss weights for supervised source training λS = 0.1,
for supervised target training λT = 1, and min-max entropy
(for MME) λH = 1.

1.5.1 Baseline Implementations

We elaborate on our implementation of the BADGE [1] and
AADA [22] baselines.
BADGE. BADGE “gradient embeddings” are computed by
taking the gradient of model loss with respect to classifier
weights, where the loss is computed as cross-entropy be-
tween the model’s predictive distribution and its most confi-
dently predicted class. Next, K-Means++ [3] is run on these
embeddings to yield a batch of samples.
AADA. In AADA, a domain discriminator Gd is learned to
distinguish between source and target features obtained from
an extractor Gf , in addition to a task classifier Gy . For active
sampling, points are scored via the following importance
weighting-based acquisition function (H denotes model en-
tropy): s(x) =

1−Gd(Gf (x))
G∗

d(Gf (x))
H (Gy (Gf (x))), and top B

instances are selected for labeling. In practice, to generate
less redundant batches we randomly sample B instances
from the top-2% scores, as recommended by the authors.
Consistent with the original work, we also add an entropy
minimization objective with a loss weight of 0.01.

clipart

(a)

real

(b)

painting

(c)

sketch

(d)

quickdraw

(e)

Figure 4: DomainNet [15] qualitative examples

0 1 2 3 4 5 6 7 8 9
Ground Truth Class

0

2

4

6

8

Co
un

t

Label Histogram Example instances
SVHN MNIST: Instances picked via entropy

(a)

0 1 2 3 4 5 6 7 8 9
Ground Truth Class

0

1

2

3

4

5

Co
un

t

Label Histogram Example instances
SVHN MNIST: Instances picked via Coreset

(b)

0 1 2 3 4 5 6 7 8 9
Ground Truth Class

0

1

2

3

4

5

6

Co
un

t

Label Histogram Example instances
SVHN MNIST: Instances picked via CLUE

(c)

Figure 6: SVHN→MNIST: Label histograms and examples of instances selected by entropy, coreset, and CLUE at Round 1 with B = 30.

(a) Round 1 (b) Round 10

(c) Round 20 (d) Round 30

Figure 7: SVHN→MNIST: TSNE visualization of feature space and instances picked by CLUE at rounds 1, 10, 20, and 30. Circles denote
target points and crosses denote source points.

1.6. CLUE: Qualitative Analysis

In this section, we attempt to get a sense of the behavior
of CLUE versus other methods via visualizations and quali-
tative examples on the SVHN→MNIST shift. Fig. 8 shows
confusion matrices of model predictions before (left) and
after (right) performing unsupervised adaptation (via MME)
at round 0. As seen, MME aligns some classes (eg. 1’s and

9’s) remarkably well even without access to target labels.
However, large misalignments remain for some other classes
(0, 4, and 6).
Visualizing selected points. In Fig. 6, we visualize in-
stances selected by three strategies at Round 0 – entropy [23],
coreset [20], and CLUE, with B = 30. We visualize the
ground truth label distribution of the selected instances, as
well as qualitative examples. As seen, strategies vary across

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

498 1 283 15 51 9 112 5 2 4

1 757 19 2 307 0 2 42 5 0

11 1 621 202 33 21 2 52 53 36

0 0 11 885 0 82 1 4 15 12

1 15 66 5 816 2 2 15 6 54

0 1 0 35 19 807 20 0 9 1

23 0 28 1 471 49 365 1 6 14

1 38 68 22 17 24 0 846 2 10

1 5 14 218 13 55 58 21 560 29

3 30 70 14 298 42 2 273 7 270

Before MME (Test acc: 64.25)

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

444 0 490 0 5 0 38 0 0 3

0 1054 3 1 74 0 0 2 1 0

0 0 981 31 8 1 0 9 2 0

0 0 16 956 0 18 0 3 1 16

1 10 22 0 555 0 1 1 1 391

0 3 2 18 5 837 18 0 4 5

22 1 6 0 580 3 343 0 1 2

0 20 88 5 2 4 0 873 2 34

0 6 19 25 3 9 27 8 816 61

3 12 19 2 21 9 0 13 1 929

After MME (Test acc: 77.88)

0

150

300

450

600

750

0

200

400

600

800

1000

SVHN MNIST Confusion Matrix

Figure 8: SVHN→MNIST: Confusion matrix of model predictions
before and after MME at round 0.

methods. “Entropy” tends to pick a large number of 8’s,
and selects high-entropy examples that (on average) appear
challenging even to humans. “Coreset” tends to have a wider
spread over classes. CLUE appears to interpolate between
the behavior of these two methods, selecting a large number
of 8’s (like entropy) but also managing to sample atleast a
few instances from every class (like coreset).
t-SNE visualization over rounds. In Fig. 7, we illustrate
the sampling behavior of CLUE over rounds via t-SNE [11]
visualizations. We follow the same conventions as Fig.3
of the main paper, and visualize the logits of a subset of
incorrect (large, opaque circles) and correct (partly transpar-
ent circles) model predictions on the target domain, along
with instances sampled via CLUE. We oversample incorrect
target predictions to emphasize regions of the feature space
on which the model currently underperforms. Across all
four stages, we find that CLUE samples instances that are
uncertain (often present in a cluster of incorrectly classified
instances) and diverse in feature space. This behavior is seen
even at later rounds when classes appear better separated.

1.7. Extended Description of the CLUE Objective

We describe in more detail the CLUE objective presented
(Eq. 4) in the main paper. Recall that we seek to identify
target instances that are diverse in model feature space. Con-
sidering the L2 distance in the CNN representation space
ϕ(·) as a dissimilarity measure, we quantify the dissimilar-
ity between instances in a set Xk in terms of its variance
σ2(Xk) given by [24]:

σ2(Xk) =
1

2|Xk|2
∑

xi,xj∈Xk

||ϕ(xi)− ϕ(xj)||2

=
1

|Xk|
∑
x∈Xk

||ϕ(x)− µk||2

where µk =
1

|Xk|
∑
x∈Xk

ϕ(x)

(1)

A small σ2(Xk) indicates that a set Xk contains instances
that are similar to one other. Our goal is to identify sets of in-

stances that are representative of the unlabeled target set, by
partitioning the unlabeled target data into K sets, each with
small σ2(Xk). Formulating this as a set-partitioning prob-
lem with partition function S : XT → {X1, X2, ..., XK},
we seek to find the S that minimizes the sum of variance
over all sets:

argmin
S

N∑
k=1

σ2(Xk) (2)

where σ2(Xk) is defined in Eq. 1.
To ensure that the more informative/uncertain instances

play a larger role in identifying representative instances, we
employ weighted-variance, where an instance is weighted
by its informativeness. Let hi denote the scalar weight cor-
responding to the instance xi. The weighted variance [16]
σ2
H(Xk) of a set of instances is given by:

σ2
H(Xk) =

1∑
xi∈Xk

hi

∑
xi∈Xk

hi||ϕ(xi)− µk||2

where µk =
1∑
hi

∑
xi∈Xk

hiϕ(xi)

(3)

Considering the informativeness (weight) of an instance
to be its uncertainty under the model, given by H(Y |x) (de-
fined in Eq. 1 in main paper), we rewrite the set-partitioning
objective in Eq. 2 to minimize sum of weighted variance of
a set (from Eq. 3):

argmin
S

K∑
k=1

σ2
H(Xk)

= argmin
S

K∑
k=1

1

Zk

∑
x∈Xk

H(Y |x)||ϕ(x)− µk||2

where µk =
1∑

x∈Xk
H(Y |x)

∑
x∈Xk

H(Y |x)ϕ(x)

and Zk =
∑
x∈Xk

H(Y |x)

(4)

This, gives us the overall set-partitioning objective for CLUE.

1.8. Full performance plots

For ease of comparison, we presented performance at 3
intermediate sampling budgets in Tables 1 and 2 in the main
paper. In Tables 9, 11, 10, we include the full corresponding
performance plots for completeness. Results are presented
across 3 learning strategies: finetuning (FT) a source model,
semi-supervised DA via MME starting from a source model,
and semi-supervised DA via DANN starting from a source
model. As is common in active learning, we present results
as learning curves, and report performance means and 1
standard deviation over 3 experimental runs via shading.

0 1k 2k 3k 4k 5k
Labels from clipart Train

40

45

50

55

60

65

cli
pa

rt
Te

st
 A

cc
ur

ac
y

R C (easy)

0 1k 2k 3k 4k 5k
Labels from sketch Train

36

39

42

45

48

51

sk
et

ch
 T

es
t A

cc
ur

ac
y

C S (moderate)

0 1k 2k 3k 4k 5k
Labels from painting Train

32

36

40

44

48

pa
in

tin
g

Te
st

 A
cc

ur
ac

y

S P (hard)

0 1k 2k 3k 4k 5k
Labels from quickdraw Train

15

20

25

30

35

40

qu
ick

dr
aw

 T
es

t A
cc

ur
ac

y

C Q (very hard)
uniform entropy margin coreset BADGE CLUE (Ours)

(a) Finetuning (ft) a source model on target labels.

0 1k 2k 3k 4k 5k
Labels from clipart Train

48

52

56

60

64

cli
pa

rt
Te

st
 A

cc
ur

ac
y

R C (easy)

0 1k 2k 3k 4k 5k
Labels from sketch Train

40

42

44

46

48

50

52

sk
et

ch
 T

es
t A

cc
ur

ac
y

C S (moderate)

0 1k 2k 3k 4k 5k
Labels from painting Train

36
38
40
42
44
46
48
50

pa
in

tin
g

Te
st

 A
cc

ur
ac

y

S P (hard)

0 1k 2k 3k 4k 5k
Labels from quickdraw Train

15

20

25

30

35

40

qu
ick

dr
aw

 T
es

t A
cc

ur
ac

y

C Q (very hard)
uniform entropy margin coreset BADGE CLUE (Ours)

(b) Semi-supervised DA via MME [19] (state-of-the-art semi-supervised DA method), starting from a source model.

0 1k 2k 3k 4k 5k
Labels from clipart Train

48

52

56

60

64

cli
pa

rt
Te

st
 A

cc
ur

ac
y

R C (easy)

0 1k 2k 3k 4k 5k
Labels from sketch Train

40

42

44

46

48

50

52

sk
et

ch
 T

es
t A

cc
ur

ac
y

C S (moderate)

0 1k 2k 3k 4k 5k
Labels from painting Train

36
38
40
42
44
46
48
50

pa
in

tin
g

Te
st

 A
cc

ur
ac

y

S P (hard)

0 1k 2k 3k 4k 5k
Labels from quickdraw Train

15

20

25

30

35

40

qu
ick

dr
aw

 T
es

t A
cc

ur
ac

y

C Q (very hard)
AADA CLUE (Ours)

(c) Semi-supervised DA via DANN [5], starting from a source model.

Figure 9: Full plots for Active DA results on DomainNet, corresponding to Table 1 in the main paper. We plot accuracies on target test set
for 4 DomainNet shifts of increasing difficulty spanning 5 domains: Real (R), Clipart (C), Sketch (S), Painting (P) and Quickdraw (Q). We
perform 10 rounds of Active DA with B = 500. We compare CLUE against state-of-the art methods for AL (entropy [23], margin [17],
coreset [20], BADGE [1]) and Active DA (AADA), spanning different AL paradigms: uncertainty sampling (U), diversity sampling (D),
and hybrid (H) combinations of the two. We use multiple learning strategies: (a) finetuning (ft) from source, (b) MME [19] (state-of-the-art
semi-supervised DA method) from source, and (c) semi-supervised DA via DANN [5] from source. Best viewed in color. We report accuracy
mean and 1 standard deviation (via shading) over 3 runs.

1.9. Future Work

Our work suggests a few promising directions of future
work. First, one could experiment with alternative uncer-
tainty measures in CLUE instead of model entropy, including
those (such as uncertainty from deep ensembles) that have
been shown to be more reliable under a dataset shift [21].
Further, one could incorporate specialized model architec-
tures from few-shot learning [2, 19] to deal with the label

sparsity in the target domain. Finally, while we restrict our
task to image classification in this paper, it is important to
also study active domain adaptation in the context of related
tasks such as object detection and semantic segmentation.

References
[1] Jordan T Ash, Chicheng Zhang, Akshay Krishnamurthy, John

Langford, and Alekh Agarwal. Deep batch active learning

0 25 50 75 100 125 150
Labels from mnist Train

60

66

72

78

84

90

96

m
ni

st
 T

es
t A

cc
ur

ac
y

Svhn Mnist

uniform
entropy
margin
coreset
BADGE
CLUE (Ours)

(a) Finetuning (ft)

0 25 50 75 100 125 150
Labels from mnist Train

72

76

80

84

88

92

96

m
ni

st
 T

es
t A

cc
ur

ac
y

Svhn Mnist

uniform
entropy
margin
coreset
BADGE
CLUE (Ours)

(b) MME [19]

0 25 50 75 100 125 150
Labels from mnist Train

78
80
82
84
86
88
90
92
94
96

m
ni

st
 T

es
t A

cc
ur

ac
y

Svhn Mnist

AADA
CLUE (Ours)

(c) DANN [5]

Figure 10: Full plots for Active DA results on SVHN→MNIST (DIGITS) with B = 10, corresponding to Table 2 (middle), in the main
paper. We use multiple learning strategies: (a) finetuning (ft) from source, (b) MME [19] (state-of-the-art semi-supervised DA method) from
source, and (c) semi-supervised DA via DANN [5] from source. Best viewed in color. We report accuracy mean and 1 standard deviation (via
shading) over 3 runs.

0 50 100 150 200 250 300
Labels from amazon Train

50

55

60

65

70

75

am
az

on
 T

es
t A

cc
ur

ac
y

Dslr Amazon

uniform
entropy
margin
coreset
BADGE
CLUE (Ours)

(a) Finetuning (ft)

0 50 100 150 200 250 300
Labels from amazon Train

55

60

65

70

75

am
az

on
 T

es
t A

cc
ur

ac
y

Dslr Amazon

uniform
entropy
margin
coreset
BADGE
CLUE (Ours)

(b) MME [19]

0 50 100 150 200 250 300
Labels from amazon Train

55

60

65

70

75

am
az

on
 T

es
t A

cc
ur

ac
y

Dslr Amazon
AADA
CLUE (Ours)

(c) DANN [5]

Figure 11: Full plots for Active DA results on DSLR→Amazon (Office) with B = 30, corresponding to Table 2 (right), in the main paper.
We use multiple learning strategies: (a) finetuning (ft) from source, (b) MME [19] (state-of-the-art semi-supervised DA method) from
source, and (c) semi-supervised DA via DANN [5] from source. Best viewed in color. At each round, we report accuracy mean and 1 standard
deviation (via shading) over 3 runs.

by diverse, uncertain gradient lower bounds. In International
Conference on Learning Representations, 2020.

[2] Wei-Yu Chen, Yen-Cheng Liu, Zsolt Kira, Yu-Chiang Wang,
and Jia-Bin Huang. A closer look at few-shot classification.
In International Conference on Learning Representations,
2019.

[3] A David. Vassilvitskii s.: K-means++: The advantages of
careful seeding. In 18th annual ACM-SIAM symposium on
Discrete algorithms (SODA), New Orleans, Louisiana, pages
1027–1035, 2007.

[4] Charles Elkan. Using the triangle inequality to accelerate
k-means. In Proceedings of the 20th international conference
on machine learning (ICML-03), pages 147–153, 2003.

[5] Yaroslav Ganin and Victor Lempitsky. Unsupervised domain
adaptation by backpropagation. In International Conference
on Machine Learning, pages 1180–1189, 2015.

[6] Greg Hamerly and Charles Elkan. Alternatives to the k-
means algorithm that find better clusterings. In Proceedings
of the eleventh international conference on Information and
knowledge management, pages 600–607, 2002.

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

[8] Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu,
Phillip Isola, Kate Saenko, Alexei Efros, and Trevor Dar-
rell. Cycada: Cycle-consistent adversarial domain adaptation.
In International Conference on Machine Learning, pages
1989–1998, 2018.

[9] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

[10] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[11] Laurens van der Maaten and Geoffrey Hinton. Visualiz-
ing data using t-sne. Journal of machine learning research,
9(Nov):2579–2605, 2008.

[12] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco,
Bo Wu, and Andrew Y Ng. Reading digits in natural images

with unsupervised feature learning. In Neural Information
Processing Systems (NeurIPS), 2011.

[13] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An
imperative style, high-performance deep learning library. In
Advances in Neural Information Processing Systems, pages
8024–8035, 2019.

[14] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vin-
cent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blon-
del, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al.
Scikit-learn: Machine learning in python. the Journal of
machine Learning research, 12:2825–2830, 2011.

[15] Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate
Saenko, and Bo Wang. Moment matching for multi-source
domain adaptation. In Proceedings of the IEEE International
Conference on Computer Vision, pages 1406–1415, 2019.

[16] George R Price. Extension of covariance selection mathemat-
ics. Annals of human genetics, 35(4):485–490, 1972.

[17] Dan Roth and Kevin Small. Margin-based active learning
for structured output spaces. In European Conference on
Machine Learning, pages 413–424. Springer, 2006.

[18] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, et al. Imagenet large
scale visual recognition challenge. International journal of
computer vision, 115(3):211–252, 2015.

[19] Kuniaki Saito, Donghyun Kim, Stan Sclaroff, Trevor Darrell,
and Kate Saenko. Semi-supervised domain adaptation via
minimax entropy. In Proceedings of the IEEE International
Conference on Computer Vision, pages 8050–8058, 2019.

[20] Ozan Sener and Silvio Savarese. Active learning for convolu-
tional neural networks: A core-set approach. In International
Conference on Learning Representations, 2018.

[21] Jasper Snoek, Yaniv Ovadia, Emily Fertig, Balaji Lakshmi-
narayanan, Sebastian Nowozin, D Sculley, Joshua Dillon, Jie
Ren, and Zachary Nado. Can you trust your model’s uncer-
tainty? evaluating predictive uncertainty under dataset shift.
In Advances in Neural Information Processing Systems, pages
13969–13980, 2019.

[22] Jong-Chyi Su, Yi-Hsuan Tsai, Kihyuk Sohn, Buyu Liu,
Subhransu Maji, and Manmohan Chandraker. Active ad-
versarial domain adaptation. In The IEEE Winter Conference
on Applications of Computer Vision, pages 739–748, 2020.

[23] Dan Wang and Yi Shang. A new active labeling method
for deep learning. In 2014 International joint conference on
neural networks (IJCNN), pages 112–119. IEEE, 2014.

[24] Yuli Zhang, Huaiyu Wu, and Lei Cheng. Some new defor-
mation formulas about variance and covariance. In 2012
Proceedings of International Conference on Modelling, Iden-
tification and Control, pages 987–992. IEEE, 2012.

