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1.1. Ablating class-balancing

In Tab. 1, we include results for ablating class-balancing
on both the source and target domains. As seen, both con-
tribute a small gain: +0.5%, +0.3% on C→S (Row 1 v/s
2) for source class-balancing and +2%, +0.1% on Rw→Cl
(Row 1 v/s 3) for target pseudo class-balancing. Using both
together works best (Row 4). However, even without any
class balancing (Row 1), SENTRY is still 3.8% and 6.2%
better than the next best method on each shift (Tab. 1-2 in
paper). This confirms that the gains are due to SENTRY’s
predictive consistency-based selective optimization.

1.2. Role of FS-architecture

Recall that in our experiments, we matched the “few-
shot” style CNN architecture used in Tan et al. [12] (Sec
4.2 in main paper). We now quantify the effect of this

# CB pseudo CB DomainNet OH (RS-UT)
(source) (target) C→S Rw→Cl

1 76.6 56.2

2 ✓ 77.1+0.5 56.5+0.3

3 ✓ 78.6+2.0 56.3+0.1

4 ✓ ✓ 79.5+2.9 56.8+0.6

Table 1: Ablating class balancing. Gray row=SENTRY. CB=class
balancing. subscript=improvement v/s row 1.

choice. As before, we measure average accuracy on Do-
mainNet Clipart→Sketch (C→S) and OfficeHome RS-UT
Real World→Clipart (Rw→Cl). We rerun our method with-
out the few-shot modification, and observe a 1.6% drop on
C→S and a 0.03% increase in average accuracy on Rw→Cl.
Overall, this modification seems to lead to a slight gain.

1.3. Additional analysis

Per-class accuracy change. In Fig. 2, we report the per-
class accuracy (sorted by class cardinality) after adapta-
tion using our method on DomainNet Clipart→Sketch, and
contrast it against the next best-performing method, In-
staPBM [6]. As seen, SENTRY outperforms InstaPBM on
37/40 categories, and is competitive on the others.
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Figure 1: SVHN→MNIST-LT (IF=20): Performance on target test set after SENTRY.
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Before SENTRY (test avg. acc.=68.05) After SENTRY (test avg. acc.=95.65)

0 1 2 3 4 5 6 7 8 9 Source Target

Figure 3: SVHN→MNIST: We use t-SNE [10] to visualize features for incorrect (large, opaque circles) and correct (partly transparent
circles) model predictions on the imbalanced target train set and source train set before (left) and after (right) adaptation via SENTRY. Colors
denote ground truth class, and × and ⃝ denote source and target instances. SENTRY is able to overcome significant misalignments for both
head classes with many examples (e.g. 1’s and 2’s) as well as tail classes with very few examples (e.g. 0’s and 9’s).
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Figure 2: DomainNet C→S: Per-class accuracy gain with SENTRY
over InstaPBM. Classes are sorted by size (largest ) smallest).

We further analyze the performance of SENTRY on the
SVHN→MNIST-LT (IF=20) shift, wherein the target train

set has been manually long-tailed to create an imbalance
factor of 20 (Sec 4.4 of main paper). In Fig 1, we show
a confusion matrix of model predictions on the target test
set after source training (left) and after target adaptation via
SENTRY (middle). As seen, strong misalignments exist ini-
tially. However, after adaptation via our method, alignment
improves dramatically across all classes. In Fig 1 (right), we
show the change in per-class accuracy after adaptation, while
sorting classes in decreasing order of size. As seen, SENTRY
improves performance for both head and tail classes, often
very significantly so.

t-SNE with SENTRY. Next, we use t-SNE [10] to visualize
features (logits) extracted by the model for the source and
target train sets. In Fig. 3, we visualize the feature landscape
before and after adaptation via SENTRY. As seen, signifi-

Most consistent instances belonging to category "bear"

(a)

Most inconsistent instance belonging to category "bear"

(b)

Figure 4: DomainNet Clipart→Sketch: Visualizing most consistent and inconsistent target instances.



Method Ar → Cl Ar → Pr Ar → Rw Cl → Ar Cl → Pr Cl → Rw Pr → Ar Pr → Cl Pr → Rw Rw → Ar Rw → Cl Rw → Pr AVG

Source 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1

DAN [7] 43.6 57.0 67.9 45.8 56.5 60.4 44.0 43.6 67.7 63.1 51.5 74.3 56.3
DANN [4] 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
JAN [9] 45.9 61.2 68.9 50.4 59.7 61.0 45.8 43.4 70.3 63.9 52.4 76.8 58.3
CDAN [8] 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8
BSP [2] 52.0 68.6 76.1 58.0 70.3 70.2 58.6 50.2 77.6 72.2 59.3 81.9 66.3
MDD [16] 54.9 73.7 77.8 60.0 71.4 71.8 61.2 53.6 78.1 72.5 60.2 82.3 68.1
MCS 55.9 73.8 79.0 57.5 69.9 71.3 58.4 50.3 78.2 65.9 53.2 82.2 66.3
InstaPBM [6] 54.4 75.3 79.3 65.4 74.2 75.0 63.3 49.7 80.2 72.8 57.8 83.6 69.7
MDD+I.A [5] 56.2 77.9 79.2 64.4 73.1 74.4 64.2 54.2 79.9 71.2 58.1 83.1 69.5

Ours 61.8 77.4 80.1 66.3 71.6 74.7 66.8 63.0 80.9 74.0 66.3 84.1 72.2

Table 2: Accuracies on standard OfficeHome. Bold and underscore denote the best and second-best performing methods respectively.

cant label imbalance exists: e.g. a lot more 1’s and 2’s are
present as compared to 0’s and 9’s. Further, we denote target
instances that are incorrectly classified by the model as large,
opaque circles. Before adaptation (left), significant misalign-
ments exist, particularly for head classes such as 1’s and
2’s. However, after adaptation via SENTRY, cross-domain
alignment for most classes improves significantly, as does
the average accuracy on the target test set (68.1% vs 95.7%).
Qualitative results. In Fig 4, we provide some qualitative
examples to build intuition about our consistency-based se-
lection. For the Clipart→Sketch shift, we visualize target
(i.e. sketch) instances belonging to the ground truth cate-
gory “bear”. On the left, we visualize a random subset
of target instances for which model predictions are most
consistent under augmentations over the course of adapta-
tion. On the right, we visualize a random subset of target
instances for which model predictions are most inconsistent
over the course of adaptation via SENTRY. Unsurprisingly,
we find highly consistent instances to be “easier” to recog-
nize, with more canonical poses and appearances. Similarly,
inconsistent instances often tend to be challenging, and may
even correspond to label noise, but our method appropriately
avoids increasing model confidence on such instances.

1.4. OfficeHome Results

In Table 3a of the main paper, we presented accuracies
averaged over all 12 shifts in the standard version of Office-
Home [14] for our proposed method against prior work. In
Table 2, we include the complete table with performances
on every shift. As seen, SENTRY achieves state-of-the-art
performance on 9/12 shifts, and improves upon the next best
method (InstaPBM [6]) by 2.5% overall.

1.5. Additional Implementation Details

In Sec 4.2 of the main paper, we presented implementa-
tion details for our method. We describe a few additional
details to aid in reproducibility.

Training and Optimization. We match optimization details
to Tan et al. [12]. On all benchmarks other than DIGITS,
we use SGD with momentum of 0.9, a learning rate of 10−2

for the last layer and 10−3 for all other layers, and weight
decay of 5× 10−4. We use the learning rate decay strategy
proposed in Ganin et al. [4]. On DIGITS, we use Adam
with a learning rate of 2 × 10−4 and no weight decay. We
use a batch size of 16 on DomainNet, OfficeHome, and
VisDA, and 128 on DIGITS. For data augmentation when
training the source models on DomainNet, OfficeHome, and
VisDA, we first resize to 256 pixels, extract a random crop
of size (224x224), and randomly flip images with a 50%
probability. For SENTRY, we use RandAugment [3] for
generating augmented images, as described in Sec. 3.3 of
the main paper and do not use any additional augmentations.
For LSENTRY, we average loss for consistent and inconsistent
instances separately and weigh each loss by the proportion
of instances assigned to each group. We select λIE=0.1 and
λSENTRY=1.0 so as to approximately scale each loss term to
the same order of magnitude.
Baseline implementations. For all baselines except In-
staPBM [6], we directly report results from prior work. We
base our InstaPBM implementation on code provided by au-
thors and implement target information entropy, conditional
entropy, contrastive, and mixup losses with loss weights 0.1,
1.0, 0.01, 0.1 respectively.

1.6. Analysis of DM-based methods under LDS

Prior work has already demonstrated the shortcomings of
distribution-matching based UDA methods under additional
label distribution shift [6, 15]. Wu et al. [15] show that
DM-based domain adversarial methods optimize two out
of a sum of three terms that bound target error as shown in
Ben-David et al. [1]. Under matching task label distributions
across domains, the contribution of the third term is small,
which is the assumption under which these methods oper-
ate; absent this, the third term is unbounded and DM-based
methods are not expected to succeed in domain alignment.
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Figure 5: SVHN→MNIST-LT (IF=20): Performance on target test set after DANN [4].

We refer readers to Sec 2 of their paper for a formal proof.
Under LDS, such DM-based methods are expected to pri-

marily mis-align majority (head) classes in the target domain
with other classes in the source domain. We empirically
test this hypothesis on the SVHN→MNIST-LT (IF=20) do-
main shift for digit recognition. In Fig 5, we repeat our
per-class accuracy analysis for adaptation via DANN [4], a
popular distribution matching UDA algorithm that uses do-
main adversarial feature matching. DANN has been shown
to lead to successful domain alignment in the absence of
label distribution shift (LDS); we now test its effectiveness
in the presence of LDS. As seen, significant misalignments
exist before adaptation (left). To match the source training
strategy and architecture to the original paper, we do not
use the few-shot architecture we use for our method, which
leads to the slightly lower starting performance observed as
compared to Fig. 1. However, due to label imbalance, DANN
is unable to appropriately align instances and only slightly
improves performance (69.54% in Fig 5, middle). In Fig 5,
we show the change in accuracy for each class after adap-
tation, while sorting classes in decreasing order of size. As
predicted by the theory, DANN does particularly poorly on
head (majority) classes (1, 2, 3, 4), while slightly improving
performance for classes with fewer examples. This is in
contrast to our method SENTRY, which is able to improve
performance for both head and tail classes (Fig 1, right).

1.7. Dataset Details

In Sec 4.1, we described our datasets in detail. For com-
pleteness, we also include label histograms and qualitative
examples from each domain in the DomainNet and Office-
Home RS-UT benchmarks proposed in Tan et al. [12] in
Figs. 6, 7.
Idiosyncrasy of the “clipart” domain. Some prior works
in UDA (e.g. Tan et al. [12]) use center cropping at test time
on DomainNet and OfficeHome, wherein they first resize a
given image to 256 pixels and then extract a 224x224 crop

from the center of the image. This practice has presumably
carried over from ImageNet evaluation, where images are
known to have a center bias [13]. Figs. 6a, 7c show quali-
tative examples from the clipart domain in DomainNet and
OfficeHome. As seen, most clipart categories span the entire
extent of the image and do not have a center bias. As a result,
using center cropping at evaluation time can adversely affect
performance when adapting to Clipart as a target domain. We
show empirical evidence of this in Tables 3, 4 – when clipart
is the target domain, performance drops consistently when
using centercrop at test time. For SENTRY, we therefore
do not use center crop at evaluation time. For comparison,
we also include the performance of our strongest baseline in
each setting in Tabs. 3, 4: InstaPBM [6] and MDD+I.A. [5],
respectively. However, we note that in both settings, with
and without centercrop, SENTRY still clearly outperforms
our strongest baselines on both benchmarks.
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Figure 6: DomainNet [11] statistics: (a)-(d): Qualitative examples from each domain. (e): Label histograms for the splits proposed in Tan et
al. [12].

Method R → C R → P R → S C → R C → P C → S P → R P → C P → S S → R S → C S → P AVG

source 65.75 68.84 59.15 77.71 60.60 57.87 84.45 62.35 65.07 77.10 63.00 59.72 66.80
+CC-eval 62.42 69.31 59.28 79.74 59.49 58.46 84.55 60.42 66.26 78.61 58.31 61.31 66.51

InstaPBM [6] 80.10 75.87 70.84 89.67 70.21 72.76 89.60 74.41 72.19 87.00 79.66 71.75 77.84

SENTRY (Ours) 83.89 76.72 74.43 90.61 76.02 79.47 90.27 82.91 75.60 90.41 82.40 73.98 81.39
+CC-eval 78.81 78.15 71.62 89.84 75.98 77.69 89.50 77.34 73.82 89.96 80.66 75.02 79.87

Table 3: Idiosyncrasy of the “clipart” domain: Per-class average accuracies on DomainNet without (white rows) and with (gray rows)
centercrop at test time. We highlight in red performance drops due to centercrop eval when adaptating to Clipart as a target domain. For
comparison, we also include the performance of InstaPBM [6], the 2nd best method from Table 1 in the main paper.
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Figure 7: OfficeHome [14] statistics: (a)-(d): Qualitative examples from each domain. (e): Label histograms for the UT target splits proposed
in Tan et al. [12].

Method Rw ) Pr Rw ) Cl Pr ) Rw Pr ) Cl Cl ) Rw Cl ) Pr AVG

source 70.74 44.24 67.33 38.68 53.51 51.85 54.39
+CC-eval 70.25 38.20 67.74 35.61 55.08 52.90 53.30

MDD+I.A [5] 76.08 50.04 74.21 45.38 61.15 63.15 61.67

SENTRY (Ours) 76.12 56.80 73.60 54.75 65.94 64.29 65.25
+CC-eval 76.35 52.25 73.08 50.60 66.69 64.19 63.86

Table 4: Idiosyncrasy of the “clipart” domain: Per-class average
accuracies on OfficeHome RS-UT without (white rows) and with
(gray rows) centercrop at test time. We highlight in red performance
drops due to centercrop eval when adaptating to Clipart as target.
For comparison, we also include the performance of MDD+I.A. [5],
the 2nd best method from Table 2 in the main paper.

1189, 2015. 3, 4
[5] Xiang Jiang, Qicheng Lao, Stan Matwin, and Moham-

mad Havaei. Implicit class-conditioned domain align-
ment for unsupervised domain adaptation. In ICML,
2020. 3, 4, 6

[6] Bo Li, Yezhen Wang, Tong Che, Shanghang Zhang,
Sicheng Zhao, Pengfei Xu, Wei Zhou, Yoshua Ben-
gio, and Kurt Keutzer. Rethinking distributional
matching based domain adaptation. arXiv preprint
arXiv:2006.13352, 2020. 1, 3, 4, 5

[7] Mingsheng Long, Yue Cao, Jianmin Wang, and
Michael Jordan. Learning transferable features with

deep adaptation networks. In International conference
on machine learning, pages 97–105. PMLR, 2015. 3

[8] Mingsheng Long, Zhangjie Cao, Jianmin Wang, and
Michael I Jordan. Conditional adversarial domain adap-
tation. In Advances in Neural Information Processing
Systems, pages 1640–1650, 2018. 3

[9] Mingsheng Long, Han Zhu, Jianmin Wang, and
Michael I Jordan. Deep transfer learning with joint
adaptation networks. In International conference on
machine learning, pages 2208–2217. PMLR, 2017. 3

[10] Laurens van der Maaten and Geoffrey Hinton. Visu-
alizing data using t-sne. Journal of machine learning
research, 9(Nov):2579–2605, 2008. 2

[11] Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang,
Kate Saenko, and Bo Wang. Moment matching for
multi-source domain adaptation. In Proceedings of the
IEEE International Conference on Computer Vision,
pages 1406–1415, 2019. 5

[12] Shuhan Tan, Xingchao Peng, and Kate Saenko. Class-
imbalanced domain adaptation: An empirical odyssey.
In Proceedings of the European Conference on Com-
puter Vision (ECCV) Workshops, September 2020. 1,
3, 4, 5, 6

[13] Antonio Torralba and Alexei A Efros. Unbiased look at
dataset bias. In CVPR 2011, pages 1521–1528. IEEE,
2011. 4



[14] Hemanth Venkateswara, Jose Eusebio, Shayok
Chakraborty, and Sethuraman Panchanathan. Deep
hashing network for unsupervised domain adaptation.
In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 5018–5027,
2017. 3, 6

[15] Yifan Wu, Ezra Winston, Divyansh Kaushik,
and Zachary Lipton. Domain adaptation with
asymmetrically-relaxed distribution alignment. In In-
ternational Conference on Machine Learning, pages
6872–6881, 2019. 3

[16] Yuchen Zhang, Tianle Liu, Mingsheng Long, and
Michael Jordan. Bridging theory and algorithm for
domain adaptation. In International Conference on
Machine Learning, pages 7404–7413, 2019. 3


