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Supplementary Details: This document is organized as

follows. Sections S1 and S2 contains additional analysis

and visualization of various aspects of our localization and

restoration networks. Experiments on performing multi-

task learning using SPAIR are provided in Section S3. The

document concludes with Section S4 providing additional

qualitative results and comparisons on various benchmark

datasets for all four tasks.

S1. Model Analysis

S1.1. Effect of Spatially­Selective Processing

We perform a few analytical experiments to verify the

effectiveness of spatially-selective processing. We vary the

threshold (for intensity change to be classified as signifi-

cant distortion) and calculate the PSNR on thus obtained de-

graded and non-degraded regions separately. Owing to the

adaptiveness of our approach and specialized modules for

the current task, we achieve better restoration results for the

regions with significant corruption (Fig. S2). This behavior

is generally expected from better restoration network de-

sign. Interestingly, we observed that, for regions with negli-

gible amount of degradation (non-degraded regions for very

low threshold), the input image itself is sufficiently good

(Fig. S2). Due to generic processing, most of the previous

methods are unable to reconstruct those regions accurately

(i.e. they corrupt the background pixels) and result in poor

PSNR even in the simplest of regions.

Next, we visualize the error-maps (the difference be-

tween degraded and ground-truth image) for the non-

degraded regions in Figs. S3 (RainStreak) and Figs. S4

(Raindrop). As we can observe, our method results in

the least amount of reconstruction error. The improvement

over existing methods in the non-degraded areas shows that

SPAIR causes least amount of changes in the non-degraded

pixels. Improved restoration in degraded regions is at-

tributed to modules specifically processing the degraded re-

gions. Our method preserves input details which are uncor-

rupted and is able to improve the quality of the restoration

of affected regions.

S1.2. Effect of SNL

The SNL module processes only degraded pixels by non-

locally aggregating information selectively from the non-

degraded regions. Attention over regions filtered by mask

selects only the most relevant features, improving perfor-

mance. In SNL’s first step, each pixel/position receives

weighed aggregation of features lying only in horizontal

and vertical directions. Serially performing two such steps

expands the span to all pixels. For a direction d and de-

graded location (i,j), Eq.3 generates an attention map us-

ing F
d
i,j(features from non-degraded locations). Next, Eq.4

performs a weighted sum to gather contextual information

from uncorrupted positions based on their utility (measured

using the attention maps). Instead of operating with a

N
2 × N

2 attention matrix (as in [59]), decomposition into

processing sparse pixels in 4 directions separately reduces

complexity to O(N
√
N ), making SNL effective and mem-

ory efficient.

S2. Analysis on Distortion Localization Net-

work (NetL)

We have visualized predicted distortion-mask along with

the ground truth distortion-mask in Fig. S1. The close re-

semblance of the predicted and ground truth degradation

maps shows the effectiveness of NetL.

Figure S1. Visualization of degradation mask for different tasks.

First, second, third row describes input image, ground-truth

mask,predicted mask respectively



S2.1. Supervised vs unsupervised learning

We choose to train NetL in a supervised fashion, since

accurate pixel-level distortion estimation is of key impor-

tance in restoration.

S2.2. Impact of Accuracy of NetL

Note that, compared to the ground truth mask, there will

inevitably be some errors in the predicted one. Although our

proposed modules in the decoder leverage the extra guid-

ance from the predicted mask, as there are standard con-

volution layers too in the decoder and the restoration net-

work is trained with the predicted mask itself, errors in very

few pixels of the predicted mask do not adversely affect the

final restoration output. NetL classifies some regions as

non-degraded, while slight intensity distortions may well

be present in those areas. Nonetheless, restoration of such

distortions is easy and this is achieved through the few non-

sparse layers in our network.

We conduct the following experiment to show that at

convergence, final performance of NetR is not very sen-

sitive to small error in the prediction of NetL. The varia-

tion of NetR’s performance with respect to NetL’s cross-

entropy loss is shown in Table S1

Table S1. Influence of the acrruacy of NetL on performance of

SPAIR for raindrop removal evaluated using AGAN Dataset [13].

Epoch 20 50 70 90

BCE Loss (×10
−2) 8.4 6.06 5.95 5.92

PSNR 32.08 32.67 32.73 32.73

S2.3. Relationship between mask and blur

We performed the suggested analysis using optical flow,

which is a good approximation to motion blur (as demon-

strated in [10]). Fig. S2.3 shows optical flow for two con-

secutive sharp frames (from dataset [35]), indicating spatial

distribution of blur magnitude. The blurred image (avail-

able in [35]) corresponding to the sharp frame is passed

through NetL to obtain the distortion mask. High spatial

correlation can be observed, establishing the utility of our

mask. Dynamic objects or regions closer to the camera usu-

ally contain highly blurred texture, and the same regions are

revealed in the mask M. Note that textureless pixels (eg. in

clothes, skin) incur minimal distortions from blur and hence

are absent in M.

Blurred Image Optical Flow Distortion Mask

S2.4. Comparison with AGAN [13]

Balance error rate [7] scores (with best threshold) for

AGAN [13] and NetL are 8.15 are 4.58, justifying the util-

ity of NetL.

S2.5. Choice of loss

Even through advanced loss functions/training optimiz-

ers would offer benefits complementary to our architecture,

we used L1 loss for fair comparison of SPAIR with all

competing restoration methods[44,51,56]. L1 error value

at M = 0 is often smaller than at M = 1, making it

predominantly a restoration loss. Nonetheless, there is po-

tential for further performance improvements by incorpo-

rating perceptual loss and confidence-driven reconstruction

loss specifically on the degraded regions.

S3. Exploring Multi-Task Learning

We also explore an additional benefit of our deisgn.

Since our architecture design does not change across

restoration tasks, it opens venues for multi-task learning.

We perform expriments on jointly learning two restoration

tasks. Among the 4 spatially-varying degradations we con-

sider in this paper, we choose to address Rain-Streaks and

RainDrops jointly,s as they are closely related to each other

and generally occur in similar environments. We explore

the possibility of obtaining a single trained model which can

remove raindrops as well as rainstreaks from a given test

image. We train SPAIR jointly on the datasets of two tasks:

Mixed RainStreak Dataset [9] (used in Table 1 of main pa-

per) and RainDrop Dataset [13] (used in Table 3 of main

paper). After training jointly on the two tasks, we evalu-

ate the model on the two benchmarks and compare against

existing task specific methods. We also include the recent

multi-task restoration model OWAN [17] as a baseline and

train it in the same setting as SPAIR.

Specifically, we train our model on 14573 clean-

degraded image pairs gathered from rain-streak datasets [4,

11, 22, 24, 25] and the raindrop dataset [13]. With this sin-

gle trained model (referred to as SPAIR (Joint)), we perform

evaluation on different test sets, including Rain100H [22],

Rain100L [22], Test100 [25], Test2800 [4], Test1200 [24]

and AGAN [13]. The results on the two tasks are reported

in Tables S2 and S3. It is evident that SPAIR (Joint) is

the first model in literature to achieve state-of-the-art results

on Rain-Streak and RainDrop removal tasks, without addi-

tional training.

S4. Additional qualitative comparisons

Rain-Streaks: Figs. S5, S6 show additional qualita-

tive results and comparisons state-of-the-art methods on

Rain100H Dataset (Table 2 of main paper). Existing meth-

ods suffer from visible rain streaks or texture-smearing



Figure S2. Comparison with baseline methods using PSNR scores in degraded and non-degraded regions for two tasks: rainstreak removal

and raindrop removal. (Best viewed in color).

Table S2. Image deraining results using SPAIR trained jointly for Rain-Streak and Raindrop removal tasks. Best and second best scores

are highlighted and underlined. SPAIR significantly outperforms baselines methods in both settings: Single task and Joint task learning.

Test100 [25] Rain100H [22] Rain100L [22] Test2800 [4] Test1200 [24] Average

Methods PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
MSPFN [9] 27.50 0.876 28.66 0.860 32.40 0.933 32.82 0.930 32.39 0.916 30.75 0.903

SPAIR (Single) 30.35 0.909 30.95 0.892 36.93 0.969 33.34 0.936 33.04 0.922 32.91 0.926

OWAN [17] (Joint) 23.85 0.810 24.46 0.724 28.54 0.878 30.40 0.891 30.09 0.872 27.47 0.835

SPAIR (Joint) 30.33 0.909 30.81 0.892 36.39 0.964 33.34 0.936 33.10 0.925 32.79 0.925

along rain direction. In comparison, our results are visually

more pleasing, while being faithful to the ground-truth im-

age. Fig. S7 contains comparisons of all methods trained on

the combined RainStreak Dataset (Table 1 of main paper).



Input DDN JORDER PreNet RESCAN SPANet Ours
Figure S3. Visualization of errors only on the pixels belonging to non-degraded regions (on images affected with Rain-Streaks from

Rain100H dataset). From left to right: Input Image, DDN, JORDER, PRENET, RESCAN, SPANET, OURS. (Best viewed in color and

zoomed-in).

Input Mask DuRN AGAN Quan Ours

Figure S4. Comparison with baseline methods using error maps calculated only in non-degraded regions within images affected with

Raindrops. (Best viewed in color).

It is evident that few rain streaks remain visible and back-

ground remains unclear in the results of all existing methods

while our approach generates satisfactory deraining results.

Raindrop: We show additional results on the test-set of

AGAN dataset in Figs. S8,S9,S10. We also include com-

parisons on a real-world image in Fig. S11 . Visually, we

can observe significant improvement over prior works.

Shadow Removal: Fig. S12 provides additional qualitative

comparisons on shadow removal showing that most exist-

ing approaches produce shadow boundaries or color incon-

sistencies. In contrast, SPAIR has minimal artifacts in the

shadow boundaries, outperforming the baselines both qual-

itatively and quantitatively.

Motion Blur: While the GoPro and HIDE datasets are gen-

erated by averaging consecutive frames of real high frame-

rate videos, the blurred images in RealBlur-J dataset are

captured in real-world conditions. In Fig. S13 we pro-

vide compariosns of our results with the best results from

[16]. In Figs. S14-S18, we provide additional results and vi-

sual comparisons of our architectures with competing meth-



Input DDN RESCAN PReNet SPA-Net RCDNet Ours GT
Figure S5. Qualitative comparison of results on test images from the Rain100H test-set (corresponding to Table 2 of main paper).



Table S3. Raindrop removal results (AGAN Dataset [13]) using SPAIR trained jointly for Rain-Streak and Raindrop removal tasks. SPAIR

yield better results than existing methods in both settings: Single task and Joint task learning.

Method Eigen [2] Pix2pix [8] AGAN[13] DuRN[12] Quan[14] SPAIR (Single) OWAN [17] (Joint) SPAIR (Joint)

PSNR 28.59 30.59 31.51 31.24 31.44 32.73 28.44 32.59

SSIM 0.6726 0.8075 0.9213 0.9259 0.9263 0.9410 0.841 0.935

(a) Input (b) SPA-Net [20] (b) RCDNet [18] (c) Ours (d) GT
Figure S6. Visual comparisons on real rain-affected images from the SPANet dataset [20] (corresponding to Table 2 of main paper).



Input DerainNet [3] UMRL [23] RESCAN [10] PreNet [15] MSPFN [9] SPAIR GT

Figure S7. Qualitative comparisons on test images from various benchmarks considered in Table 1 of main paper.

(a) Input (b) Eigen [2] (c) Pix2pix [8] (d) A-GAN [13] (e) Quan et al. [14] (f) Ours (g) GT

Figure S8. Qualitative comparisons of results on test images from the AGAN testset [13].

ods on the GoPro deblurring benchmark. The visual results

show that our results closely mimic the ground-truth sharp

images, while producing artifact-free results in regions con-

taining challenging blur. Improvements over prior meth-

ods become more pronounced on images affected with large

blur.
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Blurred DeblurGANv2 MS-CNN

DeblurGAN SRN Stach(4)-DMPHN

Ours Ground Truth

Figure S14. Visual comparison for deblurring on images from GoPro test-set. The figure shows the full sized images along with zoomed-in

patches corresponding to the Blurred image, results of DeblurGANv2, MS-CNN, DeblurGAN, SRN, Stack(4)-DMPHN, Our Result, and

Ground-truth, respectively.



Blurred DeblurGANv2 MS-CNN

DeblurGAN SRN Stach(4)-DMPHN

Ours Ground Truth

Figure S15. Visual comparison for deblurring on images from GoPro test-set. The figure shows the full sized images along with zoomed-in

patches corresponding to the Blurred image, results of DeblurGANv2, MS-CNN, DeblurGAN, SRN, Stack(4)-DMPHN, Our Result, and

Ground-truth, respectively.



Blurred DeblurGANv2 MS-CNN

DeblurGAN SRN Stach(4)-DMPHN

Ours Ground Truth

Figure S16. Visual comparison for deblurring on images from GoPro test-set. The figure shows the full sized images along with zoomed-in

patches corresponding to the Blurred image, results of DeblurGANv2, MS-CNN, DeblurGAN, SRN, Stack(4)-DMPHN, Our Result, and

Ground-truth, respectively.



Blurred DeblurGANv2 MS-CNN

DeblurGAN SRN Stach(4)-DMPHN

Ours Ground Truth

Figure S17. Visual comparison for deblurring on images from GoPro test-set. The figure shows the full sized images along with zoomed-in

patches corresponding to the Blurred image, results of DeblurGANv2, MS-CNN, DeblurGAN, SRN, Stack(4)-DMPHN, Our Result, and

Ground-truth, respectively.



Blurred DeblurGANv2 MS-CNN

DeblurGAN SRN Stach(4)-DMPHN

Ours Ground Truth

Figure S18. Visual comparison for deblurring on images from GoPro test-set. The figure shows the full sized images along with zoomed-in

patches corresponding to the Blurred image, results of DeblurGANv2, MS-CNN, DeblurGAN, SRN, Stack(4)-DMPHN, Our Result, and

Ground-truth, respectively.


