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Feature Output Shape
Input - 3× 16× 112× 112

Low-level Stage-2 128× 8× 14× 14
Mid-level Stage-3 256× 4× 7× 7
High-level Stage-4 512× 2× 4× 4

Table 1: Definitions of multi-level features on R3D-18.

Feature Output Shape
Input - 3× 16× 112× 112

Low-level Mixed-3c 480× 8× 14× 14
Mid-level Mixed-4f 832× 4× 7× 7
High-level Mixed-5c 1024× 2× 4× 4

Table 2: Definitions of multi-level features on S3D.

1. Definition of Multi-level Features
R3D-18. For R3D-18 [3], we define the features output
from ResNet Stage-2 as low-level fl, features output from
ResNet Stage-3 as mid-level fm, features output from
ResNet Stage-4 as high-level fh. When input clip of size
16× 112× 112, the channel dimension and spatiotemporal
resolutions of different level features are shown in Table. 1.

S3D. For S3D [7], we define the features output from In-
ception Mixed-3c as low-level fl, features output from In-
ception Mixed-4f as mid-level fm, features output from In-
ception Mixed-5c as high-level fh. When input clip of size
16× 112× 112, the channel dimension and spatiotemporal
resolutions of different level features are shown in Table. 2.

2. More Training Details
Data Augmentations. For augmentation on input data,
following [1, 2], we apply temporally-consistent random
cropping, horizontal flipping, color jittering and Gaussian
blurring on each input clip. For temporal augmentation on
extracted multi-level features, we employ temporal reverse
and random shuffling to construct negative pairs.

More Hyper-parameters. For default setting, we set the
temperature parameter τ in contrastive loss to 0.07 follow-
ing [4], and set the threshold η in Gins construction to 0.05.

Self-supervised Pretraining. We use R3D-18 [3] and
S3D [7] as the backbone networks and no momentum
encoder is required in our experiments. For temporal
augmentation on multi-level features, we use temporal
shuffle and reverse as two typical transformations. For the
definition of contrastive pairs, we regard clips from the
same video as positive pairs, and those of different videos
as negative. Specifically, we randomly sample 32 RGB
frames within a video, and uniformly split them into two
16-frame clips with resolution 112 × 112 to form positive
pairs. For the proposed timestamp retrieval, we regard
16-frame clips as short sequences and the 32-frame clips
as long sequences. For multi-level feature optimization,
we formulate it as a two-stage procedure. In the first few
epochs, we only use Lhigh to optimize high-level features
until they could generate reliable soft targets, i.e., Ei,j .
Then, we jointly use Lhigh and Lmul for multi-level feature
learning. We note that the temporal modeling module
is directly applied to multi-level features. The specific
definition of low-level and mid-level features for different
backbones is listed in the Supplementary Material. During
the whole pretraining stage, we use batch size of 256, and
set default number of prototypes to 1000 with queue length
1024. In total, we train for 100 epochs on Kinetics-400,
and 300 epochs on UCF-101 using ADAM optimizer
with an initial learning rate of 10−3 and weight decay of
10−5. The learning rate is decayed by 10 at 70 epochs for
Kinetics-400, and 200 epochs for UCF-101.

Action Recognition. For action recognition task, we
initialize the backbone with pretrained model parameters
except for the last fully-connected classification head.
There are two settings for this task: 1) Only use the
pretrained model for initialization and finetune the whole
network in a fully supervised manner (denoted as finetune);
2) Use the pretrained model as feature extractor and only
train the linear classifier (denoted as linear probe). For
evaluation, following [8, 6], we uniformly sample 10
clips for each video, then center crop and resize them
to 112 × 112. The final prediction of each video is the
average softmax probabilities of each clip. Performance is
measured by Top-1 accuracy.

Video Retrieval. For video retrieval task, we directly use
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Laug Lret UCF HMDB
% % 55.9 28.1
! % 59.3 30.7
% ! 60.4 31.9
! ! 63.2 33.4

Table 3: Ablation study on temporal modeling loss.

the pretrained model as a feature extractor without any fine-
tuning. Following [8, 5], we select videos in test set of UCF-
101 and HMDB-51 as query, and aim to retrieve k-nearest
neighbors in the training set. We employ the cosine similar-
ity in feature space to measure the similarity, and use Top-k
recall (denoted as R@k) for evaluation.

3. Temporal Modeling Loss
Since there are two loss terms used in temporal model-

ing, i.e., Laug and Lret. We explore the efficacy of each
term in Table. 3. The model is pretrained on Kinetics-400
with R3D-18 as backbone, the linear probe performance on
UCF-101 and HMDB-51 shows that both two terms con-
tribute to more robust temporal modeling. And jointly ex-
ploiting these two brings further improvement.
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