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Supplementary Material
In this supplementary material, we provide additional

details which we could not include in the main paper due to
space limitations, including more experimental analysis and
visualization details that help us develop further insights to
the proposed approach. We discuss:

• More results of generalized few-shot object detection.
• Additional analysis on Prototypical Calibration Block.
• Related extensions of Gradient Decoupled Layer.
• Qualitative visualization results of our approach.

A. Generalized Few-Shot Object Detection
A.1. Implementation Details

As mentioned in the main paper, we take two popu-
lar evaluation protocols into consideration to assess the ef-
fectiveness of our approach, including few-shot object de-
tection (FSOD) and generalized few-shot object detection
(G-FSOD). The difference between these two protocols is
whether the performance of base classes is still required af-
ter the fine-tuning stage. Following the G-FSOD setting in
TFA [8], we fine-tune our DeFRCN on a small balanced
training set consisting of both base and novel classes, where
each class has the same number of annotated objects (i.e.,
K-shot). In addition to deploying more training iterations
(2×), other experimental settings for G-FSOD are exactly
consistent with the FSOD in our paper.

A.2. Experimental Results of G-FSOD Setting

In this section, we show the full benchmark results of the
G-FSOD setting. For each evaluation metric, we report the
average results of n random splits (n = 30 for VOC and
n = 10 for COCO) with the same data split in TFA as well
as the 95% confidence interval estimate of the mean values.
PASCAL VOC. We present the complete G-FSOD results
of VOC (K = 1, 2, 3, 5, 10) in Table 1 and then analyze
our results from the following three aspects: (1) Novel AP.
The novel AP of our model is usually over 7% points higher
than that of TFA in three data splits, which indicates that the
proposed DeFRCN has absolute advantage on novel perfor-
mance. (2) Base AP. Our approach is able to outperform
TFA on split 2 (+1.9%∼ +3.7%AP ), however, it is slightly
worse on data split 1 and 3 (-0.3%∼ -1.0%AP ). We notice
that the base performance advantage of TFA comes from the
strategy of fine-tuning only the last layer of detectors, which
can indeed be eccentric to ensure that the base performance
does not decrease too much, but it also results in the novel
performance cannot be further improved. (3) Overall AP.
As shown in the Table 1, the proposed DeFRCN achieves
the best overall performance across all settings (+1.4% ∼
+4.0% AP ), including data splits and shots.

COCO. The Table 2 shows the G-FSOD results on COCO
dataset over K = 1, 2, 3, 5, 10, 30 shots. Although COCO
is much more complicated than VOC, similar observations
can be drawn about accuracy on both base classes and novel
classes. Concretely, the performance on base classes is
comparable to TFA, but we are far superior to TFA in terms
of both novel and overall results. In addition, we further
notice that as the number of support shots increases, our
approach can bring more performance improvements.

B. Additional Analysis on PCB
B.1. Boost Other Approaches with PCB

As a plug-and-play module, the proposed PCB is easily
equipped to any other architectures to build stronger few-
shot detectors. Here, we verify this argument with introduc-
ing PCB into other previous approaches, including FRCN-
ft [11], TFA [8], MPSR [9], and all experimental results
on COCO dataset are shown in the Table 3. Regardless of
methods or the number of shots, we observe that using PCB
can consistently achieve much higher performance (+1.0%
∼ +3.0% points) on novel classes, which demonstrates the
effectiveness and flexibility of our PCB module.

B.2. Employ Other Pre-trained Models

In the main paper, we utilize the standard ImageNet pre-
trained model (IN-1K), which is widely adopted in most
of few-shot object detection frameworks, to initialize both
Faster-RCNN and PCB. Since the core module of PCB is
the generalizable feature extractor, which determines the fi-
nal performance of the score calibration, we further explore
other pre-trained models (see Table 4) in this section. SwAV
[1] is an efficient method for pre-training without using an-
notations, i.e., self-supervised learning. IN-SwAV indicates
that the model is pre-trained by SwAV on ImageNet. IG-
WSL [5] employs the ResNeXt [10] architecture and pre-
trains on a much larger social media image dataset (Insta-
gram) with weakly-supervised learning paradigm. Table 5
shows the performance on VOC with utilizing the above
three pre-trained models. No matter which one is exploited,
the final performance is better with PCB. Moreover, we fur-
ther notice that using a stronger pre-trained model, the per-
formance of FSOD can be improved more.

Method Backbone Paradigm # Images # Classes

IN-SwAV [1] ResNet-50 S-S-L 1.28M 0
IN-1K [3] ResNet-101 S-L 1.28M 1000

IG-WSL [5] ResNeXt-101 W-S-L 940M 1000

Table 4: The comparison between different pre-trained
classification models. S-S-L, S-L and W-S-L stand for
self-supervised learning, supervised learning and weakly-
supervised learning respectively.
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B.3. Why PCB Works ?

The PCB can be reinterpreted as a non-parameter few-
shot classification model, which draws on the idea of Proto-
typical Network [7]. Based on the COCO 10-shot task, we
calculate the channel-wise cosine similarity between differ-
ent few-shot RoI prototypes (C × 1 × 1) and the feature
map (C ×H ×W ) of the test image, and then visualize the
similarity map in Fig.1. We find that the prototypes from
different categories can indeed activate distinct areas of the
feature map, which indicates that the metric-based pairwise
score in data-scarce scenario is very effective. In addition,
we notice that even if the category label of novel prototype
is not seen before by the pre-trained classification model, an
ideal similarity map can still be obtained, e.g., the novel la-
bel ’Person’ does not exist in ImageNet 1K sysnets, see the
first three lines in Fig.1. Moreover, the results of IN-SwAV
(i.e. self-supervised paradigm) in Table 5 further prove this
argument. According to the visualization and above anal-
ysis, we believe that it is reasonable for PCB to utilize the
pairwise score based on classification model to calibrate the
softmax score from the original classification branch of few-
shot detector.

C. Related extensions of GDL
C.1. Conventional Cross-Domain Object Detection

In the experimental section of the main paper, we have
verified that the proposed GDL is not only remarkably ef-
fective for few-shot object detection ( i.e., FSOD, G-FSOD
and cross-domain FSOD), but also plays a positive role in
conventional object detection. In this section, we further
explore the conventional cross-domain object detection and
all experimental results are shown in Table 6. We use the
Cityscapes [2] and FoggyCityscapes [6] (Normal-to-Foggy)
as our benchmarks and follow the same evaluation protocol
in [12]. By comparing the experimental results of the sec-
ond row and the third row in Table 6, we find that adding
GDL achieves 32.8% mAP on the weather transfer task,
which is +2.8% higher than the plain Faster-RCNN.

C.2. The value range of λ

We discuss the value range of λ into three situations.
• λrpn ∈ [0, 1] and λrcnn ∈ [0, 1]. This setting has been

explored in our paper and achieved the best results.
• λrpn ∈ (−∞, 0) or λrcnn ∈ (−∞, 0). λ < 0 means that

the downstream module has a negative effect on the opti-
mization direction of backbone. Without any adversarial
strategy, this setup is meaningless for object detection.

• λrpn ∈ (1,+∞) or λrcnn ∈ (1,+∞). λ > 1 means that
the gradient from the downstream module magnifies its
effect on the backbone. We notice that slightly increas-
ing λ (e.g. 1 ∼ 5) will not affect the stability of detector

but incite performance degradation, which is caused by
the backbone’s update speed faster than before and over-
fitting. When λ is relatively large (e.g. > 5), due to over-
emphasizing the degree of coupling between the module
and the backbone, the model will usually converge to an
unreasonable saddle point and cause a collapse solution.
The value of 5 is obtained by experiments approximately.

D. More Visualization of Our Approach
We provide qualitative visualizations of the detected

novel objects on COCO dataset in Fig.2. We show both suc-
cess (green box) and failure cases (red box) when detecting
novel objects for each image to help analyze the possible
error types, including misclassifying novel objects, mislo-
calizing objects and missing detections.
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Original Image ★ Person ★Motorcycle

Original Image ★ Person ★ Bird

Original Image ★ Person ★ Dog

Original Image ★ Cat ★Motorcycle

Original Image ★ Bird ★ Potted plant 

Figure 1: The visualization of PCB on COCO val set. Through different kinds of prototypes, which are calculated by K-shot
samples (K = 10), distinct areas of the same picture are activated. The symbol F indicates that it is some kind of prototypes.
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Split # shots Method Overall #20 Base #15 Novel #5

AP AP50 AP75 AP AP

Split 1

1

FSRW [4] 27.6±0.5 50.8 ±0.9 26.5±0.6 34.1±0.5 8.0±1.0
FRCN+ft [11] 30.2±0.6 49.4±0.7 32.2±0.9 38.2±0.8 6.0±0.7

TFA [8] 40.6±0.5 64.5±0.6 44.7±0.6 49.4±0.4 14.2±1.4
DeFRCN 42.0±0.6 (+1.4) 66.7±0.8 (+2.2) 45.5±0.7 (+0.8) 48.4±0.4 (-1.0) 22.5±1.7 (+8.3)

2

FSRW [4] 28.7±0.4 52.2±0.6 27.7±0.5 33.9±0.4 13.2±1.0
FRCN+ft [11] 30.5±0.6 49.4±0.8 32.6±0.7 37.3±0.7 9.9±0.9

TFA [8] 42.6±0.3 67.1±0.4 47.0±0.4 49.6±0.3 21.7±1.0
DeFRCN 44.3±0.4 (+1.7) 70.2±0.5 (+3.1) 48.0±0.6 (+1.0) 49.1±0.3 (-0.5) 30.6±1.2 (+8.9)

3

FSRW [4] 29.5±0.3 53.3±0.6 28.6±0.4 33.8±0.3 16.8±0.9
FRCN+ft [11] 31.8±0.5 51.4±0.8 34.2±0.6 37.9±0.5 13.7±1.0

TFA [8] 43.7±0.3 68.5±0.4 48.3±0.4 49.8±0.3 25.4±0.9
DeFRCN 45.3±0.3 (+1.6) 71.5±0.4 (+3.0) 49.0±0.5 (+0.7) 49.3±0.3 (-0.5) 33.7±0.8 (+8.3)

5

FSRW [4] 30.4±0.3 54.6±0.5 29.6±0.4 33.7±0.3 20.6±0.8
FRCN+ft [11] 32.7±0.5 52.5±0.8 35.0±0.6 37.6±0.4 17.9±1.1

TFA [8] 44.8±0.3 70.1±0.4 49.4±0.4 50.1±0.2 28.9±0.8
DeFRCN 46.4±0.3 (+1.6) 73.1±0.3 (+3.0) 50.4±0.4 (+1.0) 49.6±0.3 (-0.5) 37.3±0.8 (+8.4)

10
FRCN+ft [8] 33.3±0.4 53.8±0.6 35.5±0.4 36.8±0.4 22.7±0.9

TFA [8] 45.8±0.2 71.3±0.3 50.4±0.3 50.4±0.2 32.0±0.6
DeFRCN 47.2±0.2 (+1.4) 74.0±0.3 (+2.7) 51.3±0.3 (+0.9) 49.9±0.2 (-0.5) 39.8±0.7 (+7.8)

Split 2

1

FSRW [4] 28.4±0.5 51.7±0.9 27.3±0.6 35.7±0.5 6.3±0.9
FRCN+ft [11] 30.3±0.5 49.7±0.5 32.3±0.7 38.8±0.6 5.0±0.6

TFA [8] 36.7±0.6 59.9±0.8 39.3±0.8 45.9±0.7 9.0±1.2
DeFRCN 40.7±0.5 (+4.0) 64.8±0.7 (+4.9) 43.8±0.6 (+4.5) 49.6±0.4 (+3.7) 14.6±1.5 (+5.6)

2

FSRW [4] 29.4±0.3 53.1±0.6 28.5±0.4 35.8±0.4 9.9±0.7
FRCN+ft [11] 30.7±0.5 49.7±0.7 32.9±0.6 38.4±0.5 7.7±0.8

TFA [8] 39.0±0.4 63.0±0.5 42.1±0.6 47.3±0.4 14.1±0.9
DeFRCN 42.7±0.3 (+3.7) 67.7±0.5 (+4.7) 45.7±0.5 (+3.6) 50.3±0.2 (+3.0) 20.5±1.0 (+6.4)

3

FSRW [4] 29.9±0.3 53.9±0.4 29.0±0.4 35.7±0.3 12.5±0.7
FRCN+ft [11] 31.1±0.3 50.1±0.5 33.2±0.5 38.1±0.4 9.8±0.9

TFA [8] 40.1±0.3 64.5±0.5 43.3±0.4 48.1±0.3 16.0±0.8
DeFRCN 43.5±0.3 (+3.4) 68.9±0.4 (+4.4) 46.6±0.4 (+3.3) 50.6±0.3 (+2.5) 22.9±1.0 (+6.9)

5

FSRW [4] 30.4±0.4 54.6±0.5 29.5±0.5 35.3±0.3 15.7±0.8
FRCN+ft [11] 31.5±0.3 50.8±0.7 33.6±0.4 37.9±0.4 12.4±0.9

TFA [8] 40.9±0.4 65.7±0.5 44.1±0.5 48.6±0.4 17.8±0.8
DeFRCN 44.6±0.3 (+3.7) 70.2±0.5 (+4.5) 47.8±0.4 (+3.7) 51.0±0.2 (+2.4) 25.8±0.9 (+8.0)

10
FRCN+ft [8] 32.2±0.3 52.3±0.4 34.1±0.4 37.2±0.3 17.0±0.8

TFA [8] 42.3±0.3 67.6±0.4 45.7±0.3 49.4±0.2 20.8±0.6
DeFRCN 45.6±0.2 (+3.3) 71.5±0.3 (+3.9) 49.0±0.3 (+3.3) 51.3±0.2 (+1.9) 29.3±0.7 (+8.5)

Split 3

1

FSRW [4] 27.5±0.6 50.0±1.0 26.8±0.7 34.5±0.7 6.7±1.0
FRCN+ft [11] 30.8±0.6 49.8±0.8 32.9±0.8 39.6±0.8 4.5±0.7

TFA [8] 40.1±0.3 63.5±0.6 43.6±0.5 50.2±0.4 9.6±1.1
DeFRCN 41.6±0.5 (+1.5) 66.0±0.9 (+2.5) 44.9±0.6 (+1.3) 49.4±0.4(-0.8) 17.9±1.6 (+8.3)

2

FSRW [4] 28.7±0.4 51.8±0.7 28.1±0.5 34.5±0.4 11.3±0.7
FRCN+ft [11] 31.3±0.5 50.2±0.9 33.5±0.6 39.1±0.5 8.0±0.8

TFA [8] 41.8±0.4 65.6±0.6 45.3±0.4 50.7±0.3 15.1±1.3
DeFRCN 44.0±0.4 (+2.2) 69.5±0.7 (+3.9) 47.7±0.5 (+2.4) 50.2±0.2 (-0.5) 26.0±1.3 (+10.9)

3

FSRW [4] 29.2±0.4 52.7±0.6 28.5±0.4 34.2±0.3 14.2±0.7
FRCN+ft [11] 32.1±0.5 51.3±0.8 34.3±0.6 39.1±0.5 11.1±0.9

TFA [8] 43.1±0.4 67.5±0.5 46.7±0.5 51.1±0.3 18.9±1.1
DeFRCN 45.1±0.3 (+2.0) 70.9±0.5 (+3.4) 48.8±0.4 (+2.1) 50.5±0.2 (-0.6) 29.2±1.0 (+10.3)

5

FSRW [4] 30.1±0.3 53.8±0.5 29.3±0.4 34.1±0.3 18.0±0.7
FRCN+ft [11] 32.4±0.5 51.7±0.8 34.4±0.6 38.5±0.5 14.0±0.9

TFA [8] 44.1±0.3 69.1±0.4 47.8±0.4 51.3±0.2 22.8±0.9
DeFRCN 46.2±0.3 (+2.1) 72.4±0.4 (+3.3) 50.0±0.5 (+2.2) 51.0±0.2 (-0.3) 32.3±0.9 (+9.5)

10
FRCN+ft [11] 33.1±0.5 53.1±0.7 35.2±0.5 38.0±0.5 18.4±0.8

TFA [8] 45.0±0.3 70.3±0.4 48.9±0.4 51.6±0.2 25.4±0.7
DeFRCN 47.0±0.3 (+2.0) 73.3±0.3 (+3.0) 51.0±0.4 (+2.1) 51.3±0.2 (-0.3) 34.7±0.7 (+9.3)

Table 1: Generalized few-shot object detection (G-FSOD) performance on PASCAL VOC dataset. For each metric, we report
the average and 95% confidence interval computed over 30 random samples. All comparison results refer from [8].
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# shots Method Overall #80 Base #60 Novel #20

AP AP50 AP75 AP AP

1
FRCN+ft [11] 16.2±0.9 25.8±1.2 17.6±1.0 21.0±1.2 1.7±0.2

TFA [8] 24.4±0.6 39.8±0.8 26.1±0.8 31.9±0.7 1.9±0.4
DeFRCN (Ours) 24.0±0.4 (-0.4) 36.9±0.6 (-2.9) 26.2±0.4 (+0.1) 30.4±0.4 (-1.5) 4.8±0.6 (+2.9)

2
FRCN+ft [11] 15.8±0.7 25.0±1.1 17.3±0.7 20.0±0.9 3.1±0.3

TFA [8] 24.9±0.6 40.1±0.9 27.0±0.7 31.9±0.7 3.9±0.4
DeFRCN (Ours) 25.7±0.5 (+0.8) 39.6±0.8 (-0.5) 28.0±0.5 (+1.0) 31.4±0.4 (-0.5) 8.5±0.8 (+4.6)

3
FRCN+ft [11] 15.0±0.7 23.9±1.2 16.4±0.7 18.8±0.9 3.7±0.4

TFA [8] 25.3±0.6 40.4±1.0 27.6±0.7 32.0±0.7 5.1±0.6
DeFRCN (Ours) 26.6±0.4 (+1.3) 41.1±0.7 (+0.7) 28.9±0.4 (+1.3) 32.1±0.3 (+0.1) 10.7±0.8 (+5.6)

5
FRCN+ft [11] 14.4±0.8 23.0±1.3 15.6±0.8 17.6±0.9 4.6±0.5

TFA [8] 25.9±0.6 41.2±0.9 28.4±0.6 32.3±0.6 7.0±0.7
DeFRCN (Ours) 27.8±0.3 (+1.9) 43.0±0.6 (+1.8) 30.2±0.3 (+1.8) 32.6±0.3 (+0.3) 13.6±0.7 (+6.6)

10
FRCN+ft [11] 13.4±1.0 21.8±1.7 14.5±0.9 16.1±1.0 5.5±0.9

TFA [8] 26.6±0.5 42.2±0.8 29.0±0.6 32.4±0.6 9.1±0.5
DeFRCN (Ours) 29.7±0.2 (+3.1) 46.0±0.5 (+3.8) 32.1±0.2 (+3.1) 34.0±0.2 (+1.6) 16.8±0.6 (+7.7)

30
FRCN+ft [11] 13.5±1.0 21.8±1.9 14.5±1.0 15.6±1.0 7.4±1.1

TFA [8] 28.7±0.4 44.7±0.7 31.5±0.4 34.2±0.4 12.1±0.4
DeFRCN (Ours) 31.4±0.1 (+2.7) 48.8±0.2 (+4.1) 33.9±0.1 (+2.4) 34.8±0.1 (+0.6) 21.2±0.4 (+9.1)

Table 2: Generalized few-shot object detection (G-FSOD) performance on COCO dataset. For each metric, we report the
average and 95% confidence interval computed over 10 random samples. All comparison results refer from [8].

# shotsMethod w / PCB 1 2 3 5 10 30

7 1.0 1.8 2.8 4.0 6.9 11.0FRCN-ft [11]
3 2.4 (+1.4) 4.1 (+2.3) 5.2 (+2.4) 6.6 (+2.6) 9.9 (+3.0) 14.0 (+3.0)

7 4.4 5.4 6.0 7.7 9.0 13.4TFA [8]
3 6.7 (+2.3) 7.6 (+2.2) 9.0 (+3.0) 10.4 (+2.7) 11.8 (+2.8) 15.5 (+2.1)

7 5.1 6.7 7.4 8.7 9.8 14.5MPSR [9]
3 6.7 (+1.6) 8.9 (+2.2) 9.7 (+2.3) 10.9 (+2.2) 11.9 (+2.1) 15.5 (+1.0)

7 7.9 10.9 13.4 14.6 16.9 21.0DeFRCN (Ours)
3 9.3 (+1.4) 12.9 (+2.0) 14.8 (+1.4) 16.1 (+1.5) 18.5 (+1.6) 22.6 (+1.6)

Table 3: Effectiveness of Prototypical Calibration Block with different approaches. We evaluate FSOD performance (mAP )
on COCO dataset with K = 1, 2, 3, 5, 10, 30 shots over multiple runs. All experimental results are reproduced by us. The
term w/PCB indicates whether the method uses the PCB module. Note that the α in PCB is set to 0.5 in all experiments.

Novel Set 1 Novel Set 2 Novel Set 3Method Model 1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

7 47.0 48.8 52.3 57.1 55.6 22.5 31.9 42.1 45.6 42.3 42.5 48.7 48.9 51.1 52.2

IN-SwAV [1] 48.7 52.4 54.5 60.2 56.3 26.9 34.6 44.6 48.1 44.7 41.8 50.1 50.5 53.4 55.1
IN-1K [3] 53.6 57.5 61.5 64.1 60.8 30.1 38.1 47.0 53.3 47.9 48.4 50.9 52.3 54.9 57.4DeFRCN

IG-WSL [5] 62.3 64.5 66.6 69.3 68.2 37.5 44.7 53.5 57.6 54.7 54.7 57.2 59.0 60.9 62.0

Table 5: Experimental results of employing different pre-trained model in PCB on PASCAL VOC dataset. All reported
results are averaged over 30 random samples. IN-SwAV, IN-1K and INS-WSL denote the different pre-trained models from
ImageNet self-supervised learning, conventional supervised learning and weakly-supervised learning separately.
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Cityscapes→ FoggyCityscapes

Method Backbone Bus Bicycle Car Motor Person Rider Train Truck mAP

Faster-RCNN [12] VGG16 25.0 26.8 30.6 15.5 24.1 29.4 4.6 10.6 20.8

Faster-RCNN ∗ ResNet-101 31.5 39.3 45.2 24.7 35.3 41.2 8.8 18.7 30.0

+ GDL ResNet-101 32.9 (+1.4) 38.4 (-0.9) 47.3 (+2.1) 26.6 (+1.9) 34.3 (-1.0) 41.4 (+0.2) 17.3 (+8.5) 24.3 (+7.6) 32.8 (+2.8)

Table 6: The performance of conventional cross-domain object detection. All results in the first line refer from [12] for brief
comparison. Note that the Faster R-CNN model trained on the source domain only without any other information (denoted
as “Source Only” in other papers). The symbol ∗ indicates the model is re-implemented by us.

Figure 2: The visualization results of our 10-shot object detection on COCO dataset. We visualize the bounding boxes with
score larger than 0.7. The green and red box shows the success and failure cases of our DeFRCN respectively.

6



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

ICCV
#06196

ICCV
#06196

ICCV 2021 Submission #06196. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

References
[1] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Pi-

otr Bojanowski, and Armand Joulin. Unsupervised learning
of visual features by contrasting cluster assignments. 2020.
1, 5

[2] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 3213–3223, 2016. 2

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 770–778, 2016. 1, 5

[4] Bingyi Kang, Zhuang Liu, Xin Wang, Fisher Yu, Jiashi Feng,
and Trevor Darrell. Few-shot object detection via feature
reweighting. In Proceedings of the IEEE International Con-
ference on Computer Vision, pages 8420–8429, 2019. 4

[5] Dhruv Kumar Mahajan, Ross B. Girshick, Vignesh Ra-
manathan, Kaiming He, Manohar Paluri, Yixuan Li, Ashwin
Bharambe, and Laurens van der Maaten. Exploring the lim-
its of weakly supervised pretraining. In Proceedings of the
European Conference on Computer Vision, 2018. 1, 5

[6] Christos Sakaridis, Dengxin Dai, and Luc Van Gool. Seman-
tic foggy scene understanding with synthetic data. Interna-
tional Journal of Computer Vision, 126(9):973–992, 2018.
2

[7] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypi-
cal networks for few-shot learning. In Advances in Neural
Information Processing Systems, pages 4077–4087, 2017. 2

[8] Xin Wang, Thomas E Huang, Trevor Darrell, Joseph E Gon-
zalez, and Fisher Yu. Frustratingly simple few-shot object
detection. In International Conference on Machine Learn-
ing, 2020. 1, 4, 5

[9] Jiaxi Wu, Songtao Liu, Di Huang, and Yunhong Wang.
Multi-scale positive sample refinement for few-shot object
detection. In Proceedings of the European Conference on
Computer Vision, pages 456–472. Springer, 2020. 1, 5

[10] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and
Kaiming He. Aggregated residual transformations for deep
neural networks. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages
1492–1500, 2017. 1

[11] Xiaopeng Yan, Ziliang Chen, Anni Xu, Xiaoxi Wang, Xi-
aodan Liang, and Liang Lin. Meta r-cnn: Towards general
solver for instance-level low-shot learning. In Proceedings
of the IEEE International Conference on Computer Vision,
pages 9577–9586, 2019. 1, 4, 5

[12] Yangtao Zheng, Di Huang, Songtao Liu, and Yunhong Wang.
Cross-domain object detection through coarse-to-fine feature
adaptation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 13766–
13775, 2020. 2, 6

7


