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6. Network Architecture

The specific network architecture is of little importance
to our approach, since all methods use exactly the same ba-
sis network, initialization and random seeds. Nevertheless,
we list detailed architecture here for completeness.

We use the scaffolding approach detailed in [9] to inter-
polate sparse depths input. We then adopt an early fusion
strategy where the interpolated depth map goes through a
single convolution block (with normalization and nonlinear
activation) with stride 2 to be merged with the first stage
feature map of the image encoder. The fused feature map is
then used as input to the subsequent stages of the encoder.
The encoder is an ImageNet-pretrained MobileNet-v2 [7]
which output a set of multi-scale feature maps {Ei} at each
stage with channels (16, 24, 32, 96, 320) in decreasing res-
olution. These feature maps except for the last one are then
used as skip connection to the decoder, which eventually
output another set of multi-scale features {Di} with chan-
nels (256, 192, 128, 64, 32) in increasing resolution. We
keep the encoder essentially intact, while using ELU [4] ac-
tivation throughout the decoder. This is due to the sugges-
tion from [8], where they found a smooth activation func-
tion produces better quality uncertainty estimates. The de-
coder output {Di} are then used to generate the final multi-
scale bases {Φi} with channels (2, 4, 8, 16, 32) in increase
resolution. They are then upsampled (via bilinear interpo-
lation) to the input image resolution and concatenated to-
gether [6]. This final 63-dimensional basis Φ (with a bias
channel) is fed into either our proposed bdbf module, or a
normal convolution to generate the latent prediction before
the final activation function g.

7. Derivations

In this section, we provide derivation of equations given
in the main paper, which roughly follows the same order of
their original appearance.

7.1. Marginal Likelihood

The derivation of the full marginal likelihood function
largely follows that from Chapter 3.5 in [3].

We start by writing the evidence function in the form
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We can then write the log marginal likelihood as
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1

2
(N lnβ +M lnα−N ln(2π)

− E(m) + ln |Σ| − ln |Σ0|)
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7.2. Normalized Estimation Error Squared (NEES)

NEES was originally used to indicate the performance of
a filter [2], e.g. in a tracking application. It is defined as

εk = (xk − x̂k|k)>P−1k|k(xk − x̂k|k) (6)

where x is the true state vector, P is the state covariance
matrix, and (̂·)k|k denotes the estimated posterior at time



k. It is also used in Simultaneous Localization and Map-
ping algorithms (SLAM) to measure filter consistency [1].
Specifically, the average NEES over N Monte Carlo runs
is used. Under the assumption that the model is correct
(approximately linear Gaussian), εk is χ2 distributed with
dim(xk). Then the expected value of εk should be

E[εk] = dim(xk) (7)

For depth estimation, the state is the predicted depth at each
pixel, which is one-dimensional. Therefore, we expect a
consistent depth estimator to have an average NEES of 1.

NEES can also be extended to a Laplace distribution
which is used in this work due to the choice of L1 loss.
Given z ∼ Laplace(µ, b) and the fact that 2

b |z−µ| ∼ χ
2(2),

the expected NEES (with one degree of freedom) is
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= 1 (8)

7.3. Re-estimation Equations

Here we provide derivation of the re-estimation equa-
tions used in the EM step during inference [3]. In the E
step, we compute the posterior distribution of w given the
current estimation of the parameters α and β. In the M
step, we maximize the expected complete-data log likeli-
hood with respect to α and β and re-iterate until conver-
gence. The convergence criteria is met when the change in
relative magnitude of β is smaller than 1%.

The complete-data log likelihood function is given by

ln p(z,w|α, β) = ln p(z|w, β) + ln p(w|α) (9)

with

p(z|w, β) = N (z|Φw, β−1I) (10)

p(w|α) = N (w|m0, α
−1Σ0) (11)

The expectation w.r.t. the posterior distribution of w is
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Setting the derivatives with respect to α and β to zero gives
us the re-estimation equations.

α =
M

E[‖w −m0‖2Σ0
]

=
M

tr(Σ−10 Σ) + ‖m−m0‖2Σ0

(13)

β =
N

E[‖z−Φw‖2]

=
N

tr(Φ>ΦΣ) + ‖z−Φm‖2
(14)

8. More Results
8.1. Using BDBF as a General Component

Here we verify our claim that bdbf can be used as a gen-
eral, drop-in, component in a depth completion network.
The best published method on the KITTI depth completion
benchmark at the time of this writing is PENet [5]. It has
a fully-convolutional backbone called ENet that also ranks
third on the associated leaderboard. For details of their ap-
proach, we refer the reader to the original paper [5]. We
only discuss the minimal changes that we made to add bdbf.

Figure 1 shows the network architecture for ENet. The
color-dominant (CD) branch uses a convolutional layer to
predict CD-depth and CD-confidence. We simply replaced
this convolutional layer with our bdbf module. However,
we needed to normalize our variance prediction to conform
to their notion of confidence. This was done by inverting
the standard deviation and passing it through a Tanh non-
linearity to constrain the result to lie between 0 and 1. We
then trained both versions for 10 epochs. Training and val-
idation results are show in Figure 2. We see that by using
bdbf, we achieve slightly better validation RMSE and faster
convergence.

8.2. Inference Time

In table 3, we show inference time of all methods when
running on an image of size 320 × 240 with 5% sparsity
levels. All ensemble methods (snap / snap+log) use 5 snap-
shots as described in the main paper. They take roughly 5×
times longer for an inference pass compared to log, which is
the fastest among all. For bdbf we use a maximum iteration
of 8, but we observe convergence within 2 iterations for this
particular density. bdbf is slower than log due to the need
to solve a small linear system and the iterations required
for EM, but it is has slower latency and smaller memory
footprints compared to ensemble methods. Note that during
inference, we move expensive computations in our method
like Cholesky and LU decomposition from GPU to CPU
and then move the results back. Since this is only done in
evaluation mode, no back-propagation is needed and thus
no computation graph broken. The time needed to transfer
small tensors (dim(w)×dim(w)) between host and device
memory is negligible compared to carrying out those oper-
ations on GPU. Without these changes, bdbf runs as slow
as snap.

8.3. Estimator Consistency

Here we report average NEES scores for all methods on
various datasets. NEES is not used as a metric in our evalu-
ation since our method explicitly uses it for uncertainty cali-
bration and would render the comparison unfair. We present
it here only to show the efficacy of our uncertainty calibra-
tion scheme. Figure 3 and 4 show NEES of all methods un-



Trained with 5% VKITTI2 NYU-V2
Input Method % MAE RMSE δ1 AUSE AUCE NLL MAE RMSE δ1 AUSE AUCE NLL
rgbd snap 5% 1.192 3.267 95.59 0.445 0.170 -0.714 0.061 0.126 99.35 0.036 0.202 -1.390
rgbd snap+log 5% 1.271 3.432 95.33 0.142 0.117 -1.582 0.058 0.123 99.32 0.018 0.256 -1.596
rgbd log 5% 1.318 3.423 95.37 0.149 0.125 -1.421 0.057 0.121 99.34 0.018 0.210 -1.783
rgbd dbf 5% 0.709 2.928 97.88 0.148 0.163 -2.489 0.026 0.083 99.64 0.007 0.054 -3.145
rgbd bdbf 5% 0.703 2.925 97.88 0.110 0.136 -2.596 0.026 0.082 99.64 0.007 0.039 -3.151
rgbd snap 1% 1.784 4.679 92.04 0.805 0.214 0.730 0.087 0.198 97.65 0.051 0.238 -0.387
rgbd snap+log 1% 1.805 4.755 92.03 0.235 0.062 -1.333 0.089 0.211 97.35 0.025 0.202 -1.451
rgbd log 1% 1.831 4.769 92.21 0.223 0.147 -1.168 0.087 0.214 97.31 0.023 0.157 -1.605
rgbd dbf 1% 1.393 4.384 94.52 0.350 0.110 -1.670 0.055 0.155 98.45 0.016 0.072 -2.381
rgbd bdbf 1% 1.382 4.372 94.53 0.271 0.082 -1.707 0.055 0.155 98.45 0.016 0.059 -2.374

Table 1: Quantitative results of all methods trained and tested with 5% and 1% sparsity on VKITTI2 and NYU-V2.

Trained with 500 VKITTI2 NYU-V2
Input Method # MAE RMSE δ1 AUSE AUCE NLL MAE RMSE δ1 AUSE AUCE NLL
rgbd snap 500 2.312 5.403 90.14 0.459 0.229 -0.207 0.096 0.206 97.53 0.053 0.261 0.211
rgbd snap+log 500 2.396 5.571 89.88 0.273 0.036 -1.150 0.095 0.213 97.44 0.025 0.205 -1.393
rgbd log 500 2.492 5.800 89.13 0.299 0.095 -0.906 0.097 0.212 97.44 0.025 0.152 -1.502
rgbd dbf 500 2.050 5.067 92.58 0.453 0.051 -1.175 0.065 0.168 98.45 0.020 0.055 -2.186
rgbd bdbf 500 2.015 4.994 92.71 0.392 0.014 -1.215 0.064 0.166 98.46 0.021 0.030 -2.199
rgb bdbf 500 2.569 5.642 88.67 0.481 0.015 -0.979 0.098 0.199 98.48 0.030 0.014 -1.689
rgbd snap 50 5.069 9.326 66.48 1.696 0.327 3.495 0.324 0.605 78.89 0.136 0.376 6.036
rgbd snap+log 50 5.173 9.401 65.91 1.180 0.188 0.608 0.312 0.593 80.55 0.084 0.052 -0.390
rgbd log 50 5.107 9.433 66.52 1.114 0.275 2.439 0.323 0.599 80.49 0.088 0.134 -0.166
rgbd bdbf 50 4.098 8.440 76.91 0.977 0.021 -0.411 0.215 0.446 88.63 0.081 0.026 -0.926
rgb bdbf 50 3.725 7.786 80.67 0.701 0.012 -0.612 0.144 0.296 94.97 0.039 0.011 -1.338

Table 2: Quantitative results of all methods trained and tested with 500 and 50 sparse depths. rgbd under the input column
indicates the basis network uses the sparse depths scaffolding approach from [9], whereas rgb uses color image as basis
network input only.

Inference snap snap+log log dbf bdbf
Time [ms] 68.84 66.17 16.68 21.84 23.97

Table 3: Inference time of all methods with 5% sparsity.
Image resolution is 320× 240.

der mid- and low- density with varying sparsity level. We
see that our methods are the most consistent of all and re-
main relatively consistent even with sparsity change. Note
that this consistency-based calibration can not be applied to
other methods, because we did not observe the same amount
of over- or under-confidence from them. While calibration
of other baseline models is feasible, doing so would require
extra data and thus not considered in this work.

8.4. Shared Prior

Figure 5 supports our claim in the main paper about the
assumption of a shared prior across samples. Here we show
the weight histograms of two training sessions on different
datasets (NYU-V2 and VKITTI2). We see that within each
dataset, the weight distribution exhibits a fairly sharp peak.
The small bump on the right side of each plot is formed by
the bias term in the weights which reflects the average log
depth of the dataset.

8.5. Mid-density Depth Completion

In this section, we present extra results on mid-density
depth completion. Table 1 shows quantitative results of all
methods trained with 5% sparsity and test on 5% and 1%
sparsity. Here we also include comparison with dbf, where
we compute the variance by assuming an infinitely broad
prior without the EM step. We see that dbf and bdbf have
perform similar due to the large amount of sparse depths,
but bdbf still has the best performance overall. Figure 6 and
7 show some extra in-distribution samples of all methods
from VKITTI2 and NYU-V2 respectively.

8.6. Low-density Depth Completion

Table 2 shows quantitative results of all methods trained
with 500 sparse depths and test on 500 and 50 sparse depths.
We choose 50 because it is smaller than the number of ba-
sis (63). This would previously fail with DBF, but BDBF
have no problem dealing with any amount of sparse depths.
Moreover, we suggest that when designing a system work-
ing under extremely low sparsity (≤ 100 points) it is bet-
ter to forgo the idea of a depth encoder altogether, because
convolution is simply not designed for sparse data and in-
terpolation schemes rarely work with only a few points.

Figure 8 and 10 show some extra in-distribution samples



Figure 1: The backbone of PENet [5], which is called ENet, and our modification. Figure taken directly from the paper.
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Figure 2: Training and validation RMSE of PENet and
PENet-bdbf after training for 10 epochs on KITTI Depth
Completion dataset.
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Figure 3: NEES scores for all methods with 5% sparsity.
Closer to 1 (dashed black line) means more consistent.

of all methods from VKITTI2 and NYU-V2 respectively.
Figure 9 shows more qualitative results of bdbf(rgb) and

log(rgb) on VKITTI2 with no sparse depths.
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Figure 4: NEES scores for all methods with 500 sparse
depths. Closer to 1 (dashed black line) means more con-
sistent. Note the log scale on y-axis.
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Figure 5: Tensorboard records of Weight histograms of two
training sessions on NYU-V2 (left) and VKITTI2 (right).

8.7. Domain Shift

There are many scenarios to domain shift in depth com-
pletion, for example, different sparsity levels, sim-to-real or
even dataset change.

For sim-to-real, we take the same models that are trained
on VKITTI2 and directly test on KITTI without any fine-
tuning. The data distribution shift in this case manifests
most notably in image quality as well as noise level and
spatial distribution of sparse depths. Quantitative results
are shown in Table 4, where we also list in-distribution test
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Figure 6: Sample qualitative results of all methods trained and test with 5% sparsity on VKITTI2. Colormaps scales are
different for each methods to visualize details. Axes scales are same for all methods.

Trained and tested on KITTI (original)
Method MAE RMSE δ1 AUSE AUCE NLL

snap 0.638 1.663 98.68 0.272 0.161 -1.298
snap+log 0.701 1.784 98.52 0.092 0.105 -1.605

log 0.899 2.022 98.44 0.109 0.133 -1.544
bdbf 0.364 1.682 98.74 0.060 0.100 -2.337

Trained on VKITTI2 and tested on KITTI (shifted)
Method MAE RMSE δ1 AUSE AUCE NLL

snap 1.296 2.549 92.03 0.876 0.161 -0.675
snap+log 0.853 2.245 97.69 0.134 0.117 -1.578

log 0.866 2.018 97.96 0.138 0.274 -0.755
bdbf 0.469 1.989 98.29 0.072 0.037 -2.381

Table 4: Quantitative results of all methods trained on
KITTI and VKITTI with 5% sparsity and tested on KITTI.

on KITTI for comparison. Most methods encounter per-
formance drop in one or several metrics when tested under
a slightly different domain. However bdbf achieve overall
best results in both scenarios, with its performance under
distributional shift better then some of the baselines in the
original domain.

For more tests on distributional shift, we utilize the
15-deg and 30-deg sequences from VKITTI2. These se-
quences are variants of clone with the camera pointing at
different angles. Table 5 shows quantitative results of all
methods trained with 5% sparsity on VKITTI2 and test on
these two sequences.

Finally, we take models trained on NYU-V2 and evalu-

VKITTI2 (15-deg)
Method MAE RMSE δ1 AUSE AUCE NLL

snap 1.164 3.161 95.67 0.445 0.172 -0.733
snap+log 1.206 3.260 95.43 0.131 0.103 -1.558

log 1.301 3.328 95.38 0.144 0.137 -1.347
bdbf 0.686 2.861 97.92 0.101 0.139 -2.618

VKITTI2 (30-deg)
Method MAE RMSE δ1 AUSE AUCE NLL

snap 1.084 3.009 95.39 0.428 0.175 -0.740
snap+log 1.139 3.106 95.10 0.128 0.087 -1.509

log 1.217 3.166 95.10 0.141 0.146 -1.251
bdbf 0.627 2.711 98.02 0.085 0.143 -2.676

Table 5: Quantitative results of all methods trained with
5% sparsity on VKITTI2 and test on 15-deg and 30-deg
sequences from VKITTI2.

ated on VKITTI2 without any modification or fine-tunning.
This is a complete dataset change, from indoor to outdoor

NYU-V2 Test on VKITTI2
Name # MAE RMSE δ1 AUSE AUCE NLL

log 5% 15.16 20.89 1.143 0.256 0.479 10.112
bdbf 5% 0.914 3.044 96.88 0.121 0.162 -2.084
log 500 17.18 22.17 0.137 12.18 0.448 4.457

bdbf 500 2.364 5.900 88.51 0.785 0.086 -0.481

Table 6: Quantitative results of log vs bdbf trained with 5%
and 500 sparsity on NYU-V2 and test on VKITTI2.



scenes, with different camera intrinsics and image sizes.
Results are shown in Table 6. We see that log completely
fails on this dataset change, while bdbf maintains relatively
high performance and uncertainty estimation.
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[4] Djork-Arné Clevert, Thomas Unterthiner, and S. Hochreiter.
Fast and accurate deep network learning by exponential linear
units (elus). CoRR, abs/1511.07289, 2016. 1

[5] Mu Hu, S. Wang, Bin Li, Shiyu Ning, L. Fan, and Xiaojin
Gong. Penet: Towards precise and efficient image guided
depth completion. ArXiv, abs/2103.00783, 2021. 2, 4

[6] Chao Qu, Ty Nguyen, and Camillo J. Taylor. Depth comple-
tion via deep basis fitting. 2020 IEEE Winter Conference on
Applications of Computer Vision (WACV), pages 71–80, 2020.
1

[7] Mark Sandler, A. Howard, Menglong Zhu, A. Zhmoginov,
and Liang-Chieh Chen. Mobilenetv2: Inverted residuals and
linear bottlenecks. 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 4510–4520, 2018. 1

[8] Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Na-
dathur Satish, N. Sundaram, Md. Mostofa Ali Patwary, Prab-
hat, and R. Adams. Scalable bayesian optimization using deep
neural networks. In ICML, 2015. 1

[9] Alex Wong, Xiaohan Fei, Stephanie Tsuei, and Stefano
Soatto. Unsupervised depth completion from visual inertial
odometry. IEEE Robotics and Automation Letters, 5:1899–
1906, 2020. 1, 3



D
ep

th
 P

re
d.

U
nc

er
ta

in
ty

P
re

d.
 E

rr
or

E
rr

or
 B

ou
nd

s
D

en
si

ty

snap snap+log log bdbf

Figure 7: Sample qualitative results of all methods trained and test with 5% sparsity on NYU-V2. Colormaps scales are
different for each methods to visualize details. Axes scales are same for all methods.
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Figure 8: Sample qualitative results of all methods trained and test with 500 sparse points on VKITTI2. Colormaps scales
are different for each methods to visualize details. Axes scales are same for all methods.
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Figure 9: More qualitative results of our method tested with 0 sparse points. log(rgb) is trained as a monocular depth
prediction network with NLL loss, which serves as a baseline. bdbf(rgb) is trained with 500 sparse depths.
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Figure 10: Sample qualitative results of all methods trained and test with 500 sparse points on NYU-V2. Colormaps scales
are different for each methods to visualize details. Axes scales are same for all methods.
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