Supplementary materials

The following supplementary materials provide further
details on training, on the results of the different bench-
marks, and more qualitative analysis and visualizations.

6. Experiments setup
6.1. Training details and hyperparameters

We trained each model using a standard stochastic gra-
dient descent (SGD) optimizer with momentum parameter
0.937 and weight decay 5e~*. We used warm-up and cosine
decay rule for training. For the NMS parameters, we used
an JoU threshold of 0.65 and an object confidence threshold
of 0.001. When generating pseudolabels, we used a higher
confidence threshold of 0.4. We used the model definitions,
as defined by the initial release of YOLOvS [20] with last
commit id ‘364fcfd7d’. Finally, we used a generalized IoU
loss (GIoU) for localization and a focal loss for the classifi-
cation loss and objectness loss for training the models.

To manage our experiments and make our results repro-
ducible, we used the open-source tool Guildai [29]. Most
hyper-parameters (Momentum, NMS, etc.) were set as de-
faults in YOLOVS repo [20]. We tuned only the learning
rate for each dataset. The value of hyperparameters are
configured in the ‘guild.yml’ file. For the gradual adapta-
tion procedure, we use a large enough number of epochs for
Phase 1 to ensure the convergence of BN adaptation. We
use a separate validation set to maintain the best checkpoint
using the validation AP. Therefore, we initialize the phase 2
training with the best checkpoint of phase 1. It is also worth
noting that our framework does not add new hyperparame-
ters.

When training the COCO source models or the Stylize
and DeepAugment baselines, we followed the training pro-
cedure in YOLOVS [20] and trained the model from scratch
using 300 epochs and a learning rate of 0.01. For Pascal and
Cityscapes the source models were obtained through trans-
fer learning from COCO pretrained weights using 100 and
200 epochs respectively. For that, we used learning rate of
4e~5 and batch size of 128. When applying our adaptation
method, we also fine-tuned the source model using same
learning rate of 4¢~5, a batch size of 128 and 100 epochs
for all models and target domains.

We did not use multi-scale training to simplify our
analysis. The same image input size was used dur-
ing training, pseudo-label generation and evaluation. For
Sim10K/KITTI to Cityscapes, we specify the input size
used to train each student and teacher model in our results.
For the artistic benchmark, we use the same input size of
416 for both student and teacher models. For the image cor-
ruption benchmark, we used the same input size of 416 for
Pascal-C and COCO-C whereas we used a larger size of 640
for Cityscapes-C.

For the Stylize baseline, we applied only one style for
each image to keep the dataset size the same, to ensure a fair
comparison. We preserved the original image dimensions
and disabled the cropping. Alpha was fixed to 1 to apply
the highest strength of stylization.

6.2. More details on datasets

Table 8, 9, 10, and 11 show a summary of the data splits
that we used as the source or clean split versus target or
stylized/augmented split for each dataset. To make a fair
comparison, we keep the total number of images in the en-
tire training data to be the same for all methods.

For Pascal-C, COCO-C, and Cityscapes-C, we generated
the corrupted test set by applying each corruption to the
clean test with all five severity levels. For the cross-domain
adaptation benchmark, we used the test split for Clipart,
Watercolor, or Comic for measuring test AP on the target
domain.

e Sim10K: we use the SIM10k dataset as the labeled
source training data and the training set of Cityscapes
as unlabeled target data. The validation set of
Cityscapes was used as target test set.

o KITTI: we use the training set of KITTT as the labeled
source data and the training set of Cityscapes as unla-
beled target data. The validation set of Cityscapes was
used as target test set.

e Clipart/Watercolor/Comic: the datasets used in
Source, DeepAugment, Stylize baselines for Cli-
part/Watercolor/Comic are exactly the same as those
used for Pascal-C. Other than this, the train set of
Clipart/Watercolor/Comic were used as the target do-
main dataset. In DT+PL experiments, we first apply
the domain transfer on the union of VOC2007 train-
val and VOC2012 trainval. Then, we apply the DT
step on the source model using the domain-transferred
dataset. Finally, we apply the PL step on the out-
put model of DT step using the train split of of Cli-
part/Watercolor/Comic. Note that we do not use the
ground-truth labels but use the pseudo-labels instead.

e Pascal-C: we used VOC2007 trainval as the source
and VOC2012 trainval as the target. For the Deep-
Augment baseline, we augmented VOC2012 train with
the CAE method and VOC2012 val with the EDSR
method. We used VOC2007 test as the clean test set.

e COCO-C: we split COCO train2017 into two approx-
imately equal halves and used the first half as source,
the second half as target. For DeepAugment, we di-
vided COCO train2017 in three random splits and used
them for the clean split, CAE split and EDSR split re-
spectively. COCO val2017 was used as clean test.

Method Source / Clean split (size)

Target / Augmented split (size)

Source VOC2007-trainval (5011)
DeepAugment VOC2007-trainval (5011)
Stylize VOC2007-trainval (5011)
BN-Adapt VOC2007-trainval (5011)

STAC VOC2007-trainval (5011)
SimROD (Ours) VOC2007-trainval (5011)

N/A

CAE VOC2012-train (5717) + EDSR VOC2012-val (5823)

stylized VOC2012-trainval (11540)
VOC2012-trainval (11540)
VOC2012-trainval (11540)
VOC2012-trainval (11540)

Table 8. Dataset splits used for Pascal-C

Method Source / Clean split (size) Target / Augmented split (size)

Source coco-train2017/first half (58458) N/A

DeepAugment coco-train2017/first 1/3 (39088) CAE second 1/3 (39088) + EDSR third 1/3 (39090)
Stylize coco-train2017/first half (58458) stylized coco-train2017/second half (58808)
BN-Adapt coco-train2017/first half (58808) coco-train2017/second half (58808)

STAC coco-train2017/first half (58458)
coco-train2017/first half (58458)

SimROD (Ours)

coco-train2017/second half (58808)
coco-train2017/second half (58808)

Table 9. Dataset splits used for COCO-C

e Cityscapes-C: we split the source domain and tar-
get domain by city names. We carefully chose the
cities for each domain so that source and target are
of approximately equal size. Of all 18 cities in
cityscapes-train, 9 cities: ‘cologne’, ‘krefeld’, ‘bre-
men’, ‘darmstadt’, ‘hanover’, ‘aachen’, ‘stuttgart’,
‘jena’, and ‘tubingen’ were used as source data; the
other 9 cities: ‘bochum’, ‘ulm’, ‘monchengladbach’,
‘weimar’, ‘strasbourg’, ‘zurich’, ‘hamburg’, ‘dussel-
dorf’, and ‘erfurt’ were used as target data. When
training the DeepAugment baseline for Cityscapes, we
further split the target domain into two splits. The
first split that contains ‘zurich’, ‘weimar’, ‘erfurt’, and
‘strasbourg’ was augmented with the CAE method.
The second split which contains ‘bochum’, ‘ulm’,
‘monchengladbach’, ‘hamburg’, ‘dusseldorf’ was aug-
mented with the EDSR method. The validation set of

Cityscapes was used as clean test.

7. More results on synthetic-to-real and cross-
camera benchmarks

7.1. Full results on Sim10K/KITTI to Cityscapes

Table 12 and 13 expand on the results reported in Table |
and 2 respectively. In particular, they show the performance
of the teacher models and that of models adapted with the
smaller teacher model X640.

7.2. Qualitative visualization

In Figure 5, we present qualitative results for the detec-
tion of the model S416 (i.e. yolovSs with input 416) to
demonstrate the improvement brought by SimROD com-
pared to the source model. By comparing with ground-truth
labels, Figure 5 shows that the adapted model can detect
most objects with good accuracy except for some highly
occluded ones.

8. More results on artistic benchmark
8.1. Benchmark results on Clipart and Comic

We include the benchmarks results for Clipart and Comic
in Table 14 and 15 respectively. We used only 500 unla-
beled images from the target domain for Clipart and 1000
images for Comic. Similar to the results for Watercolor in
Table 3, our method SimROD outperformed the baselines
when compared with models that achieve same Source AP
performance. Compared to DT+PL in [18], our method
further improved the AP50 of the S416 model by absolute
8.35, 12 and 10.69 percentage points on Clipart, Comic and
Watercolor respectively. In addition, SImROD consistently
achieves high effective adaptation gains p between 70-97%
across model sizes and benchmarks.

8.2. Data efficiency analysis on Watercolor and
Comic

Next, we analyze the data efficiency of SimROD by in-
creasing the size of unlabeled data used to adapt the mod-
els. For Watercolor and Comic, we used the extra splits,
which contains extra 52.8K and 17.8K additional unlabeled
images respectively. Moreover, all models use the same
input size of 416. Figure 6 and 7 compare the perfor-
mance of SimROD with the two pseudo-labeling baselines
(STAC and DT+PL) on Watercolor and Comic respectively.
All methods improved when using more unlabeled data
from the target domain. For example, SimROD improves
the Yolov5s model performance by absolute +3.23% and
+4.69% on Watercolor and Comic respectively.

Nonetheless, SimROD could outperform baseline meth-
ods without using extra data for Yolov5s and YolovSm
models, which are adapted using the self-adapted teacher
Yolov5x. In other words, our proposed method used only
1000 unlabeled images and still outperformed the base-
lines, which used 50x or 18x more data. For example, our

Method Source / Clean split (size) Target / Augmented split (size)
Source cityscapes-train/first half (1483) N/A
DeepAugment cityscapes-train/first half (1483) CAE train/second half-split 1 (732) + EDSR train/second half-split 2 (750)
Stylize cityscapes-train/first half (1483) stylized cityscapes-train/second half (1482)
Bn_only cityscapes-train/first half (1483) cityscapes-train/second half (1482)
Stac cityscapes-train/first half (1483) cityscapes-train/second half (1482)
Ours w/o TG cityscapes-train/first half (1483) cityscapes-train/second half (1482)
Ours cityscapes-train/first half (1483) cityscapes-train/second half (1482)
Table 10. Dataset splits used for Cityscapes-C
Method Source / Clean split (size) Target / Augmented split (size)
Source VOC2007-trainval (5011) N/A
DeepAugment VOC2007-trainval (5011) CAE VOC2012-train (5717) + EDSR VOC2012-val (5823)
Stylize VOC2007-trainval (5011) stylized VOC2012-trainval (11540)
Bn_only VOC2007-trainval (5011) clipart/watercolor/comic-train (500/1000/1000)
Stac VOC2007-trainval (5011) clipart/watercolor/comic-train (500/1000/1000)
Ours w/o TG VOC2007-trainval (5011) clipart/watercolor/comic-train (500/1000/1000)
Ours VOC2007-trainval (5011) clipart/watercolor/comic-train (500/1000/1000)

Table 11. Dataset splits used for Clipart/Watercolor/Comic

method achieved an AP50 of 42.34% on yolovSs whereas
the best baseline on yolov5Sm has an AP50 of only 37.79%.

8.3. Qualitative comparison on Clipart, Comic and
Watercolor

In Figures 8 and 9, we provide qualitative comparisons

[18]) and DeepAugment method using same YolovSs
model. These comparisons illustrates the simplicity and

effectiveness of SImROD. Our proposed DomainMix aug-
mentation and teacher-guided gradual adaptation enabled to

leverage unlabeled target data and to mitigate the label noise
and domain shift. In contrast to DT+PL, SimROD did not
need to generate synthetic intermediate dataset and our pro-

with pseudo-labeling baselines (STAC [30] and DT+PL S 5
posed augmentation is much simpler than DeepAugment.

Method Arch. Backbone Source AP50 Oracle T p Reference
DAF [6] F-RCNN V 30.10 39.00 - 8.90 - CVPR 2018
MAF[11] F-RCNN V 30.10 41.10 - 11.00 - ICCV 2019
RLDA [22] F-RCNN 1 31.08 4256 68.10 1148 31.01 ICCV 2019
SCDA [38] F-RCNN V 34.00 43.00 - 9.00 - CVPR 2019
MDA [36] F-RCNN V 3430 42.80 - 8.50 - ICCV 2019
SWDA [27] F-RCNN V 34.60 42.30 - 7.70 - CVPR 2019
Coarse-to-Fine [37] F-RCNN V 35.00 43.80 59.90 8.80 35.34 CVPR 2020
SimROD (self-adapt) YOLOvS5 S320 33.62 38.73 48.81 5.11 33.66 Ours
SimROD (w. teacher X640) YOLOvS S320 33.62 44770 4881 11.08 7293 Ours
MTOR [4] F-RCNN R 3940 46.60 - 7.20 - CVPR 2019
EveryPixelMatters [16] FCOS \Y% 3980 49.00 69.70 9.20 30.77 ECCV 2020
SimROD (self adapt) YOLOvVS S416 39.57 4421 56.49 4.63 2737 Ours
SimROD (w. teacher X640) YOLOvS S416 39.57 51.68 5649 12.10 71.53 Ours
SimROD (w. teacher X1280) YOLOvS5 S416 39.57 5205 5649 1247 73.73 Ours
SimROD (self-adapt) YOLOvS Mo640 55.86 60.29 71.05 443 29.16 Ours
SimROD (w. teacher X640) YOLOv5 M640 55.86 62.18 71.05 6.33 41.64 Ours
SimROD (w. teacher X1280) YOLOv5 M640 55.86 6440 71.05 8.54 56.24 Ours
SimROD (self-adapt) YOLOvVS X640 60.34 63.27 7251 293 24.09 Ours
SimROD (self-adapt) YOLOv5 X1280 71.66 7594 82.90 428 38.08 Ours

Table 12. Results of different method/model pairs for the Sim10K-to-Cityscapes adaptation scenario. “V”, “I” and “R” represent the
VGG16, ResNet50, Inception-v2 backbones respectively. ”S3207, “M416”, “X640”, “X1280” represent different scales of Yolov5 model
with increasing depth, width and input size. “Source” denotes that the model is trained only using source images without domain adaptation.
For fair comparison, we group together method/model pairs whose “Source” performance are similar. We report the AP50 (%) performance
of the adapted model and the “Oracle” model which is trained with labeled target data as well each method’s absolute and effective gains
(%) when available. T and p are the absolute gain and the effective gain respectively as defined in (1) and (2).

Method Arch. Backbone Source AP50 Oracle T p Reference

DAF [6] F-RCNN V 30.20 38.50 - 8.30 - CVPR 2018
MAF [11] F-RCNN V 30.20 41.00 - 10.80 - ICCV 2019
RLDA [22] F-RCNN 1 31.10 4298 68.10 11.88 32.11 ICCV 2019
PDA [17] F-RCNN V 3020 4390 55.80 13.70 53.52 WACV 2020
SimROD (self-adapt) YOLOvS S416 31.61 3594 56.15 433 17.65 Ours
SimROD (w. teacher X640) YOLOv5 S416 31.61 4355 56.15 1194 48.66 Ours
SimROD (w. teacher X1280) YOLOvS5 S416 31.61 45.66 56.15 14.05 57.27 Ours

SCDA [38] F-RCNN V 37.40 42.60 - 5.20 - CVPR 2019
EveryPixelMatters [16] FCOS R 3530 45.00 70.40 9.70 27.64 ECCV 2020
SimROD (self adapt) YOLOvS M4l16 36.09 4294 59.29 6.85 29.51 Ours
SimROD (w. teacher X640) YOLOv5 M416 36.09 4529 59.29 9.19 39.64 Ours
SimROD (w. teacher X1280) YOLOv5 M416 36.09 47.52 5929 1143 49.26 Ours
SimROD (self-adapt) YOLOvVS X640 45.67 50.81 72.18 5.14 19.38 Ours
SimROD (self-adapt) YOLOvS X1280 52.07 5825 82.50 6.18 2031 Ours

Table 13. Results of different method/model pairs on the KITTI to Cityscapes adaptation scenario. 7 and p are the absolute gain and the
effective gain respectively as defined in (1) and (2).

Method Arch. Backbone Source APS50 Oracle T p Reference
ADDA [34] SSD v 26.80 2740 5540 0.60 2.10 CVPR 2017
DT+PL [18] SSD v 2680 46.00 5540 19.20 67.13 CVPR2018
DAF [6] F-RCNN V 26.20 2240 50.00 -3.80 -1597 CVPR2018
DT+PL [18] F-RCNN V 26.20 3490 50.00 870 36.55 CVPR2018
SWDA [27] F-RCNN V 27.80 38.10 50.00 1030 4640 CVPR2019
DAM [23] F-RCNN V 2490 41.80 50.00 1690 67.33 CVPR2018
DeepAugment [12] YOLOvS S416 29.32 31.65 56.07 233 8.71 arXiv 2020
BN-Adapt [19] YOLOv5 S416 29.32 3743 5607 811 30.32 NeurIPS 2020
Stylize [10] YOLOvS S416 2932 38.80 56.07 9.48 3544 arXiv 2019
STAC [30] YOLOvS S416 29.32 39.64 56.07 1032 3858 arXiv 2020
DT+PL [18] YOLOv5 S416 29.32 3949 56.07 10.17 38.02 CVPR 2018
SimROD (self-adapt) YOLOvS5 S416 2932 4128 56.07 1196 4472 Ours
SimROD (teacher X416) YOLOv5 S416 2932 4784 56.07 18.52 69.24 Ours

Table 14. Benchmark results on Real (VOC) to Clipartlk domain shift

Method Arch. Backbone Source AP5S0 Oracle T p Reference
ADDA SSD \Y% 2490 2380 4640 -1.10 -5.12 CVPR2017
DT SSD v 2490 29.80 4640 490 22.79 CVPR2018
DT+PL SSD v 2490 37.20 4640 1230 57.21 CVPR 2018
DAF F-RCNN V 21.40 23.20 - 1.80 - CVPR 2018
DT F-RCNN V 21.40 29.80 - 840 - CVPR 2018
SWDA F-RCNN V 21.40 28.40 - 7.00 - CVPR 2019
DAM F-RCNN V 21.40 34.50 - 13.10 - CVPR 2019
DeepAugment YOLOvS5 S416 18.19 21.39 39.81 320 14.80 arXiv 2020
BN-Adapt YOLOv5 S416 18.19 2553 39.81 734 33.95 NeurIPS 2020
Stylize YOLOvVS S416 18.19 2757 39.81 938 4339 arXiv2019
STAC YOLOvS5 S416 18.19 2640 39.81 821 37.97 arXiv 2020
DT+PL YOLOvS5 S416 18.19 25.66 39.81 7.47 3455 CVPR2018
SimROD (self-adapt) YOLOvS S416 18.19 2954 39.81 1135 5250 Ours
SimROD (teacher X416) YOLOv5 S416 18.19 37.65 39.81 1946 90.01 Ours
DeepAugment YOLOvS M416 23.58 27.65 49.13 4.07 1593 arXiv2020
BN-Adapt YOLOvS M4l16 23.58 32.04 49.13 846 33.11 NeurIPS 2020
Stylize YOLOvS M416 23.58 3456 49.13 1098 4297 arXiv2019
STAC YOLOvS M416 23.58 3276 49.13 9.18 3593 arXiv 2020
DT+PL YOLOvS M416 23.58 33,53 49.13 995 38.94 CVPR2018
SimROD (self-adapt) YOLOv5S M416 23.58 3793 49.13 1435 56.15 Ours
SimROD (teacher X416) YOLOvS5 M416 23.58 42.08 49.13 1850 7241 Ours

Table 15. Benchmark results on Real (VOC) to Comic domain shift

" EW T e 'Ig m i WM Mmeepr g

L
)

AR WEE EW MM WH A
F‘V*&i bW us _F‘v‘

Before Adaptation After Adaptation Ground Truth

Figure 5. Examples of prediction results on Sim10K to Cityscapes. We show predictions on the target test set before and after applying
SimROD as well as the ground-truth labels.

yolov5s

[T NoExtra Data
B with Extra Data

@
3

AP50 on Watercolor
-
3

N
S

0

yolov5m

yolov5x

STAC DT+PL Ours

STAC DT+PL Ours

STAC DT+PL Ours

Figure 6. Comparison of performance with and without extra unlabeled data on Watercolor.

yolov5s

[NoExtra Data
B with Extra Data
4

AP50 on Comic
8 8

N
S

3

[

yolov5m

yolov5x

STAC DT+PL Ours

STAC DT+PL Ours

STAC DT+PL Oure

Figure 7. Performance comparison on Comic with and without extra unlabeled data.

9. More results on image corruptions
9.1. Results for different model sizes

Table 4, 5, and 6 show only the results for YolovSm
model for Pascal-C, COCO-C, and Cityscapes-C respec-
tively. In Table 16, 17, and 18, we show that SimROD
consistently achieves higher performance compared to the
baselines across different model sizes and benchmarks. As
expected, larger models provided extra capacity and thus
higher Performance.

9.2. Per-corruption performance on Pascal-C

In the main paper, we reported the mAP, rPC, and 7, met-
rics, which were averaged over 15 corruption types. Here,
in Tables 19, 20, and 21, we provide a breakdown of the
results for each corruption type on the Pascal-C dataset for
the three YOLOvVS models.

9.3. Performance comparison with Augmix

Here, we compare our proposed method with Augmix
augmentation [14] and report the results on Pascal-C in Ta-
ble 22 and 23 for the models YOLOv5s and YOLOVS5x re-

spectively. When comparing the mean performance under
corruption (mPC), we can see that Augmix performed the

worst among all augmentation-based baselines. Interest-
ingly, applying Augmix augmentation with DeepAugment
improved the performance of DeepAugment by +3.3%
AP50 and +1.03% AP50 on YOLOv5s and YOLOv5x mod-
els respectively. Nonetheless, SimROD still outperformed
DeepAument+Augmix by more than +5% AP50 on both
models. Although we have not tried, it is possible that ap-
plying Augmix on top of DomainMix may further improve
the performance of our proposed method.

9.4. Data efficiency analysis on Pascal-C

In Figure 10 and 11, we analyzed the data efficiency of
our proposed method using a YOLOvS5s model and Pascal-
C dataset. For that, we used a subset of training datasets
and considered two scenarios. For both scenarios, we ran-
domly generated three different sets of data, measured the
performance in three runs. The average of the three runs are
plotted with error bars in Figure 10 and 11.

In the first scenario, we used all the available labeled
data from source domain consisting of 5011 images. On the
other hand, we used only a portion of the unlabeled images
available. As shown in Figure 10, our proposed method out-
performed STAC by a margin of 10% AP50. Moreover, our

e ¢ == ¢ =

0

0.51 person . X ! person 0.78 person
cor 093). 91 94/ 91/ 91 0555 |car0.62 5 cor 089 1 |car088
e Ol R =l 8 V\‘? 1 = { - ﬂr’ 7 ﬁ“,‘/ ¥

DeepAugment
Figure 8. Comparing various methods on examples from the Comic dataset.

Source DeepAugment Styliz DT+PL Ours
Figure 9. Comparing various methods on examples from the Clipart dataset.

method achieved a relative robustness 7. of +21.75% AP50 target domain images respectively. Since the data was im-
and +16.61% AP50 using only 10% and 1% of unlabeled balanced in this scenario, we also considered applying the

Method AP mPC*® PC T
yolov5ss
Source 75.87 42.38 55.86 0.00
Stylize 77.26 52.12 67.46 9.74
BN-Adapt 74.71 53.75 7194 11.37
DeepAugment 77.89 55.42 71.15 13.04
STAC 80.11 56.12 70.05 13.74
SimROD (Ours) 80.08 67.95 84.85 25.57
Supervised training ~ 80.44 71.18 88.49 28.80
yolovSm
Source 83.13 53.78 64.69 0.00
Stylize 84.79 62.92 7421 9.14
BN-Adapt 83.01 64.60 77.82 10.82
DeepAugment 85.05 64.88 76.28 11.10
STAC 87.00 66.88 76.88 13.11
SimROD (Ours) 86.97 75.40 86.70 21.63
Supervised training ~ 86.75 78.74 90.76 24.96
yolov5x
Source 87.42 62.84 71.88 0.00
Stylize 87.29 69.60 79.73 6.76
BN-Adapt 86.59 71.59 82.68 8.75
DeepAugment 87.78 72.15 82.19 931
STAC 89.57 73.68 82.25 10.84
SimROD (Ours) 89.24 78.48 87.95 15.64
Supervised training ~ 88.88 82.56 92.89 19.72

Table 16. Performance comparison on Pascal-C benchmark

Method APy mPC rPC Te
yolov5ss
Source 31.35 17.68 56.40 0.00
Stylize 30.07 1899 63.15 1.31
BN-Adapt 30.91 20.09 6499 240
DeepAugment 30.37 19.87 6544 219
STAC 31.25 20.00 64.02 232
SimROD (Ours) 31.21 23.94 76.71 6.26
Supervised training ~ 30.90 2533 8199 7.65
yolovSm
Source 36.85 22.03 59.79 0.00
Stylize 35.75 2382 66.63 1.79
BN-Adapt 36.24 2479 68.39 276
DeepAugment 35.51 2433 6852 230
STAC 36.76 2480 6746 277
SimROD (Ours) 36.79 2846 77.36 6.43
Supervised training 36.23 30.16 83.26 8.13
yolovSx
Source 41.61 26.60 6393 0.00
Stylize 40.38 28.16 69.73 1.56
BN-Adapt 41.70 29.77 7140 3.17
DeepAugment 41.12 29.13 70.84 253
STAC 41.85 29.69 7093 3.09
SimROD (Ours) 41.63 31.87 76.57 5.27
Supervised training ~ 41.06 3484 8486 8.24

Table 17. Performance benchmark on COCO-C dataset

weighted balanced sampling to STAC. Figure 10 shows that
it could slightly improve the performance of STAC when
the datasets were very imbalanced.

In the second scenario, we used only a given percentage
of the available training data for both the source and target
domain. While this scenario assumes the datasets are bal-
anced, the total number of training images is much smaller
than in the previous scenario. For example, using 1% of
training data corresponds to a total of 165 images. With 1%
of training data, STAC could not adapt the model. In con-

trast, our proposed method provided a relative robustness
7. of +4.54% AP50 and +18.28% AP50 using only 1% and
10% of training data respectively.

These results confirm that our method was more data-
efficient. In particular, our DomainMix augmentation could
produce a diverse set of mixed samples even from very few
training images from both domains. When more unlabeled
data was available, our method could further leverage the
unlabeled data and provide strong supervision for adapta-
tion by mitigating the label noise.

Method APgean mPC rPC Te
yolov5ss
Source 17.08 9.50 55.62 0.00
Stylize 1896 11.75 6197 2.25
DeepAugment 1724 1139 66.07 1.89
STAC 20.34 12.82 63.02 332
SimROD (Ours) 19.82 1495 7545 545
Supervised training 2230 1935 86.77 9.85
yolovSm
Source 19.48 11.53 59.19 0.00
Stylize 21.77 1462 67.16 3.09
DeepAugment 20.28 1479 7293 3.26
STAC 2454 1539 6271 3.86
SimROD (Ours) 2406 18.01 74.86 6.48
Supervised training 26.58 23.50 8843 11.97
yolov5x
Source 25.65 16.63 64.83 0.00
Stylize 2770 1938 69.96 2.75
DeepAugment 25.12 18.80 74.84 2.17
STAC 29.62 2098 70.85 435
SimROD (Ours) 2927 21.70 74.15 5.07
Supervised training 3148 27.66 87.87 11.03

Table 18. Performance benchmark on Cityscapes-C dataset

Noise Blur Weather Digital

Method AP¢ean mPC Gauss. Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG
Source 75.87 4238 3271 3532 2824 43.02 3296 39.87 29.05 37.09 4353 59.66 69.21 42.00 47.04 46.53 4948
Stylize 717.26 52.12 4151 44.61 37.82 49.80 48.02 47.37 3579 4953 5737 6755 7407 51.69 59.10 56.77 60.84
DeepAugment 77.89 5542 5048 53.12 48.67 55.38 4923 48.87 37.58 49.73 58.19 70.29 7491 56.88 51.61 63.39 6299
BN Adapt 74.71 5375 48.07 5122 46.00 53.23 4434 48.60 38.63 5056 5580 6850 7334 57.18 59.32 52.86 58.55
STAC 80.11 56.12 46.85 49.78 44.08 58.41 4538 51.99 41.68 5339 59.80 74.01 7891 59.85 61.76 56.14 59.78
SimROD 80.08 67.95 6491 66.11 65.28 65.12 63.03 65.54 5399 69.19 69.27 76.85 7914 7138 73.52 65.54 70.34
(Ours)

Oracle 80.44 71.18 6828 69.14 68.10 68.18 67.84 69.77 62.19 7141 7126 7749 7995 7341 75.90 70.40 74.41

Table 19. Performance comparison per corruption type for YOLOv5s model on Pascal-C benchmark

9.5. Effects of corruption severity levels

To apply our method on the image corruption bench-
mark, we applied a corruption severity level of 3 for cre-

Figure 10. mPC performance of YOLOvVSs on Pascal-C for a given percentage of unlabeled target data and using 100% source data.

AP50 over corruption (mPC)

o
=3

504

--- STAC

— SimROD

- == Source

— — STAC with weighted balanced sampling

- - - Oracle (100% data)

25

50

75

Proportion of unlabeled target domain data (%)

100

Noise Blur Weather Digital

Method APgesn mPC Gauss. Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG
Source 83.13 5378 47.44 5135 4498 53.87 42.17 48.61 36.64 51.77 5629 71.74 778.82 55.81 56.43 5452 56.17
Stylize 84.79 6292 5344 5756 52.62 60.18 5742 57.53 4532 63.02 6750 78.02 8191 65.64 69.69 66.10 67.86
DeepAugment 85.05 64.88 61.75 64.06 60.64 63.74 5795 56.18 4475 6231 6827 7936 82.69 68.34 61.92 7140 69.78
BN Adapt 83.01 64.60 61.06 63.83 60.54 62.33 5529 58.77 46.71 6544 67.88 7834 81.62 69.48 68.81 62.15 66.75
STAC 87.00 66.88 6146 64.77 60.73 67.17 55.54 61.35 49.57 6841 7120 8252 8590 71.83 69.92 65.61 67.25
SimROD 86.97 7540 7200 7411 73.01 72.65 70.25 72.85 60.65 77.81 77.47 84.03 86.17 79.66 8049 72.54 77.36
(Ours)

Oracle 86.75 78.74 7635 76.68 76.42 75.63 75.12 77.10 70.31 80.07 79.56 8425 86.15 80.60 82.88 78.73 81.22

Table 20. Performance comparison per corruption type for YOLOv5Sm model on Pascal-C benchmark
Noise Blur Weather Digital

Method AP¢ean mPC Gauss. Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG
Source 87.42 62.84 5930 61.06 58.38 61.45 51.43 58.48 4179 6382 6634 7728 8425 65.77 64.40 63.07 65.79
Stylize 87.29 69.60 6244 65.03 62.20 67.57 63.64 65.13 50.84 7044 74.10 8244 8530 74.16 7473 72776 73.25
DeepAugment 87.78 72.15 71.25 73.27 71.16 71.40 64.70 65.57 49.76 7142 7491 84.17 86.43 7748 68.75 77.16 74.88
BN Adapt 86.59 7159 71.05 72.63 70.94 67.90 63.70 66.55 5241 7279 7391 8238 84.62 76.03 7496 70.51 73.43
STAC 89.57 73.68 7177 7340 7171 72.57 64.51 69.37 52.81 7621 77.68 8504 8840 78.87 7592 72.69 7423
SimROD 89.24 7848 76.09 7831 77.23 75.85 73.11 75.29 62.75 81.10 8096 86.62 88.16 82.94 8245 76.64 79.69
(Ours)

Oracle 88.88 82.56 81.14 8196 81.27 79.10 79.08 80.65 73.97 83.58 83.66 87.18 8854 84.03 85.55 84.09 84.57

Table 21. Performance comparison per corruption type for YOLOv5x model on Pascal-C benchmark

ating the unlabeled target domain images. In this section,
we present additional analysis to understand the effects of
corruption severity of the training images on the test perfor-
mance. In Fig. 12 and 13, we show the relative robustness 7
and mean performance under corruption mPC of an adapted
Yolov5s model using our method. Similarly, Fig. 14 and 15
show the same metrics for an adapted YOLOvS5x model.

The corruption types are sorted in ascending order based
on the performance of the source model on these types. For
instance, the source models achieved the highest mPC on
fog and lowest mPC on impulse noise. This explains that
the relative robustness on fog was lower compared to those
on other corruption types because the source model already
achieved high mPC on fog. Notable improvements were
observed on the other corruption types.

Fig. 12 and 13 show that the adapted YOLOvSs model
enjoyed higher improvement on test datasets with higher
severity levels. More importantly, high improvements could
be achieved when the training images have severity levels

similar to those of the test images. This means that using
unlabeled target-domain samples is effective as long as they
are representative of the actual test set.

9.6. Qualitative comparison on image corruptions

Fig. 16 illustrates how various methods handle the glass
blur corruption (severity 5) on Pascal-C sample. In addition,
Fig. 17 shows results of various methods across a range of
severity levels for the glass blur corruption. We see that the
proposed method was more effective in handling the cor-
ruptions. In contrast to the baseline methods, our adaptation
method detected most objects in the images and make fewer
classification errors. We could also observe that the source
model completely failed to detect objects in most cases.

9.7. More detailed ablations on the components

Table 24 expands the ablation study provided in the main
paper onto various model sizes.

Method APcean mPC
Source 75.87 42.38
Augmix 7942 4694
Stylize 77.26 52.12
DeepAugment 77.89 55.42
DeepAugment+Augmix 80.85 60.15
SimROD (Ours) 80.08 67.95

Table 22. Augmix comparison for YOLOv5s model on Pascal-C.

Method APc]can mPC

Augmix 87.46 62.31
Source 87.42 62.84
Stylize 87.29 69.60
DeepAugment 87.78 72.15
DeepAugment+Augmix 88.36 73.18
SimROD (Ours) 89.24 7848

Table 23. Augmix comparison for YOLOv5x model on Pascal-C.

70
— SimROD

--- STAC

- == Source

- == Oracle (100% data)

60

AP50 over corruption (mPC)

50

Proportion of unlabeled target domain data (%)
Figure 11. mPC performance of YOLOVS5s on Pascal-C for a given percentage of training data (source and target).

fog contrast glass_blur impulse_noise

o

Relative robustness

50
40
30
20

10

IS

Test severity
N w

Training severity
Figure 12. Relative robustness improvement on YOLOVS5s using our method for specific corruption types and severity levels on Pascal-C.

contrast glass_blur impulse_noise

mPC (AP50)
100
I 75
50
25
0
1 2 3 4 5 1 2 3 4 5

Training severity
Figure 13. Final mPC performance of YOLOVSs using our method for specific corruption types and severity levels on Pascal-C.

o

I

Test severity
N w

1 2 3 4 5

fog contrast glass_blur impulse_noise

3

Relative robustness

40
I 30
20

10

IS

Test severity
N w

Training severity
Figure 14. Relative robustness improvement on YOLOvVS5x using our method for specific corruption types and severity levels on Pascal-C.

contrast glass_blur impulse_noise

@

mPC (AP50)
100

IS

75
50
25
0

Test severity
N ow

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
Training severity
Figure 15. Final mPC performance of YOLOvS5x using our method for specific corruption types and severity levels on Pascal-C.

Glass_blur

F;erson 0.51 1%
person 0.76§

BN_Adapt Stylize ' DeepAug
Figure 16. Demonstration of how different methods handle glass_blur corruption (severity 5); images from Pascal-C.

10. Dataset and DomainMix visualizations ferent datasets. Note that the images used to form domain-

ixed les, doml d, and
Fig. 18 and 19 show examples of the domain-mixed im- frixed exanpies, ate randomlly cropped, and may occupy a

ages produced by the DomainMix augmentation from dif-

Model Method TG DomainMix BN-Adapt Finetune Corrupt AP50 7.
Source 42.38 0.00
BN-Adapt v 53.75 11.37
BN-Adapt + DomainMix v v 56.13 13.75
yolov5s SimROD (Ours) w/o Teacher Guidance v v v 60.35 17.97
SimROD (Ours) w/o Gradual Adaptation v v v 67.87 25.49
Our full method (SimROD) v v v v 67.95 25.57
Source 53.78 0.00
BN-Adapt v 64.60 10.82
BN-Adapt + DomainMix v v 66.78 13.01
yolovSm SimROD (Ours) w/o Teacher Guidance v v v 71.81 18.03
SimROD (Ours) w/o Gradual Adaptation v v v 73.45 19.67
Our full method (SimROD) v v v v 75.40 21.62
Source 62.84 0.00
BN-Adapt v 71.83 8.99
BN-Adapt + DomainMix v v 73.64 10.80
yolov5x SimROD (Ours) w/o Gradual Adaptation v v v 75.58 12.74
SimROD (Ours) w/o Teacher Guidance v v v 78.16 15.32
Our full method (SimROD) v v v v 78.48 15.64

Table 24. Ablation study on Pascal-C dataset

Glass-blur image 116

.

DeepAug Ours

Figure 17. Demonstration of how different methods handle glass_blur corruption at different severity levels; image from Pascal-C.

different height and width of the final image.

Fog

Contrast

Glass blur

Impulse
noise g, A

Figure 18. Examples of DomainMix image samples on Pascal-C dataset with various corruption types.

