
Supplementary materials

The following supplementary materials provide further
details on training, on the results of the different bench-
marks, and more qualitative analysis and visualizations.

6. Experiments setup

6.1. Training details and hyperparameters

We trained each model using a standard stochastic gra-
dient descent (SGD) optimizer with momentum parameter
0.937 and weight decay 5e�4. We used warm-up and cosine
decay rule for training. For the NMS parameters, we used
an IoU threshold of 0.65 and an object confidence threshold
of 0.001. When generating pseudolabels, we used a higher
confidence threshold of 0.4. We used the model definitions,
as defined by the initial release of YOLOv5 [20] with last
commit id ‘364fcfd7d’. Finally, we used a generalized IoU
loss (GIoU) for localization and a focal loss for the classifi-
cation loss and objectness loss for training the models.

To manage our experiments and make our results repro-
ducible, we used the open-source tool Guildai [29]. Most
hyper-parameters (Momentum, NMS, etc.) were set as de-
faults in YOLOv5 repo [20]. We tuned only the learning
rate for each dataset. The value of hyperparameters are
configured in the ‘guild.yml’ file. For the gradual adapta-
tion procedure, we use a large enough number of epochs for
Phase 1 to ensure the convergence of BN adaptation. We
use a separate validation set to maintain the best checkpoint
using the validation AP. Therefore, we initialize the phase 2
training with the best checkpoint of phase 1. It is also worth
noting that our framework does not add new hyperparame-
ters.

When training the COCO source models or the Stylize
and DeepAugment baselines, we followed the training pro-
cedure in YOLOv5 [20] and trained the model from scratch
using 300 epochs and a learning rate of 0.01. For Pascal and
Cityscapes the source models were obtained through trans-
fer learning from COCO pretrained weights using 100 and
200 epochs respectively. For that, we used learning rate of
4e�5 and batch size of 128. When applying our adaptation
method, we also fine-tuned the source model using same
learning rate of 4e�5, a batch size of 128 and 100 epochs
for all models and target domains.

We did not use multi-scale training to simplify our
analysis. The same image input size was used dur-
ing training, pseudo-label generation and evaluation. For
Sim10K/KITTI to Cityscapes, we specify the input size
used to train each student and teacher model in our results.
For the artistic benchmark, we use the same input size of
416 for both student and teacher models. For the image cor-
ruption benchmark, we used the same input size of 416 for
Pascal-C and COCO-C whereas we used a larger size of 640
for Cityscapes-C.

For the Stylize baseline, we applied only one style for
each image to keep the dataset size the same, to ensure a fair
comparison. We preserved the original image dimensions
and disabled the cropping. Alpha was fixed to 1 to apply
the highest strength of stylization.

6.2. More details on datasets

Table 8, 9, 10, and 11 show a summary of the data splits
that we used as the source or clean split versus target or
stylized/augmented split for each dataset. To make a fair
comparison, we keep the total number of images in the en-
tire training data to be the same for all methods.

For Pascal-C, COCO-C, and Cityscapes-C, we generated
the corrupted test set by applying each corruption to the
clean test with all five severity levels. For the cross-domain
adaptation benchmark, we used the test split for Clipart,
Watercolor, or Comic for measuring test AP on the target
domain.

• Sim10K: we use the SIM10k dataset as the labeled
source training data and the training set of Cityscapes
as unlabeled target data. The validation set of
Cityscapes was used as target test set.

• KITTI: we use the training set of KITTI as the labeled
source data and the training set of Cityscapes as unla-
beled target data. The validation set of Cityscapes was
used as target test set.

• Clipart/Watercolor/Comic: the datasets used in
Source, DeepAugment, Stylize baselines for Cli-
part/Watercolor/Comic are exactly the same as those
used for Pascal-C. Other than this, the train set of
Clipart/Watercolor/Comic were used as the target do-
main dataset. In DT+PL experiments, we first apply
the domain transfer on the union of VOC2007 train-
val and VOC2012 trainval. Then, we apply the DT
step on the source model using the domain-transferred
dataset. Finally, we apply the PL step on the out-
put model of DT step using the train split of of Cli-
part/Watercolor/Comic. Note that we do not use the
ground-truth labels but use the pseudo-labels instead.

• Pascal-C: we used VOC2007 trainval as the source
and VOC2012 trainval as the target. For the Deep-
Augment baseline, we augmented VOC2012 train with
the CAE method and VOC2012 val with the EDSR
method. We used VOC2007 test as the clean test set.

• COCO-C: we split COCO train2017 into two approx-
imately equal halves and used the first half as source,
the second half as target. For DeepAugment, we di-
vided COCO train2017 in three random splits and used
them for the clean split, CAE split and EDSR split re-
spectively. COCO val2017 was used as clean test.



Method Source / Clean split (size) Target / Augmented split (size)
Source VOC2007-trainval (5011) N/A
DeepAugment VOC2007-trainval (5011) CAE VOC2012-train (5717) + EDSR VOC2012-val (5823)
Stylize VOC2007-trainval (5011) stylized VOC2012-trainval (11540)
BN-Adapt VOC2007-trainval (5011) VOC2012-trainval (11540)
STAC VOC2007-trainval (5011) VOC2012-trainval (11540)
SimROD (Ours) VOC2007-trainval (5011) VOC2012-trainval (11540)

Table 8. Dataset splits used for Pascal-C

Method Source / Clean split (size) Target / Augmented split (size)
Source coco-train2017/first half (58458) N/A
DeepAugment coco-train2017/first 1/3 (39088) CAE second 1/3 (39088) + EDSR third 1/3 (39090)
Stylize coco-train2017/first half (58458) stylized coco-train2017/second half (58808)
BN-Adapt coco-train2017/first half (58808) coco-train2017/second half (58808)
STAC coco-train2017/first half (58458) coco-train2017/second half (58808)
SimROD (Ours) coco-train2017/first half (58458) coco-train2017/second half (58808)

Table 9. Dataset splits used for COCO-C

• Cityscapes-C: we split the source domain and tar-
get domain by city names. We carefully chose the
cities for each domain so that source and target are
of approximately equal size. Of all 18 cities in
cityscapes-train, 9 cities: ‘cologne’, ‘krefeld’, ‘bre-
men’, ‘darmstadt’, ‘hanover’, ‘aachen’, ‘stuttgart’,
‘jena’, and ‘tubingen’ were used as source data; the
other 9 cities: ‘bochum’, ‘ulm’, ‘monchengladbach’,
‘weimar’, ‘strasbourg’, ‘zurich’, ‘hamburg’, ‘dussel-
dorf’, and ‘erfurt’ were used as target data. When
training the DeepAugment baseline for Cityscapes, we
further split the target domain into two splits. The
first split that contains ‘zurich’, ‘weimar’, ‘erfurt’, and
‘strasbourg’ was augmented with the CAE method.
The second split which contains ‘bochum’, ‘ulm’,
‘monchengladbach’, ‘hamburg’, ‘dusseldorf’ was aug-
mented with the EDSR method. The validation set of
Cityscapes was used as clean test.

7. More results on synthetic-to-real and cross-

camera benchmarks

7.1. Full results on Sim10K/KITTI to Cityscapes

Table 12 and 13 expand on the results reported in Table 1
and 2 respectively. In particular, they show the performance
of the teacher models and that of models adapted with the
smaller teacher model X640.

7.2. Qualitative visualization

In Figure 5, we present qualitative results for the detec-
tion of the model S416 (i.e. yolov5s with input 416) to
demonstrate the improvement brought by SimROD com-
pared to the source model. By comparing with ground-truth
labels, Figure 5 shows that the adapted model can detect
most objects with good accuracy except for some highly
occluded ones.

8. More results on artistic benchmark

8.1. Benchmark results on Clipart and Comic

We include the benchmarks results for Clipart and Comic
in Table 14 and 15 respectively. We used only 500 unla-
beled images from the target domain for Clipart and 1000
images for Comic. Similar to the results for Watercolor in
Table 3, our method SimROD outperformed the baselines
when compared with models that achieve same Source AP
performance. Compared to DT+PL in [18], our method
further improved the AP50 of the S416 model by absolute
8.35, 12 and 10.69 percentage points on Clipart, Comic and
Watercolor respectively. In addition, SimROD consistently
achieves high effective adaptation gains ⇢ between 70-97%
across model sizes and benchmarks.

8.2. Data efficiency analysis on Watercolor and

Comic

Next, we analyze the data efficiency of SimROD by in-
creasing the size of unlabeled data used to adapt the mod-
els. For Watercolor and Comic, we used the extra splits,
which contains extra 52.8K and 17.8K additional unlabeled
images respectively. Moreover, all models use the same
input size of 416. Figure 6 and 7 compare the perfor-
mance of SimROD with the two pseudo-labeling baselines
(STAC and DT+PL) on Watercolor and Comic respectively.
All methods improved when using more unlabeled data
from the target domain. For example, SimROD improves
the Yolov5s model performance by absolute +3.23% and
+4.69% on Watercolor and Comic respectively.

Nonetheless, SimROD could outperform baseline meth-
ods without using extra data for Yolov5s and Yolov5m
models, which are adapted using the self-adapted teacher
Yolov5x. In other words, our proposed method used only
1000 unlabeled images and still outperformed the base-
lines, which used 50⇥ or 18⇥ more data. For example, our



Method Source / Clean split (size) Target / Augmented split (size)
Source cityscapes-train/first half (1483) N/A
DeepAugment cityscapes-train/first half (1483) CAE train/second half-split 1 (732) + EDSR train/second half-split 2 (750)
Stylize cityscapes-train/first half (1483) stylized cityscapes-train/second half (1482)
Bn only cityscapes-train/first half (1483) cityscapes-train/second half (1482)
Stac cityscapes-train/first half (1483) cityscapes-train/second half (1482)
Ours w/o TG cityscapes-train/first half (1483) cityscapes-train/second half (1482)
Ours cityscapes-train/first half (1483) cityscapes-train/second half (1482)

Table 10. Dataset splits used for Cityscapes-C

Method Source / Clean split (size) Target / Augmented split (size)
Source VOC2007-trainval (5011) N/A
DeepAugment VOC2007-trainval (5011) CAE VOC2012-train (5717) + EDSR VOC2012-val (5823)
Stylize VOC2007-trainval (5011) stylized VOC2012-trainval (11540)
Bn only VOC2007-trainval (5011) clipart/watercolor/comic-train (500/1000/1000)
Stac VOC2007-trainval (5011) clipart/watercolor/comic-train (500/1000/1000)
Ours w/o TG VOC2007-trainval (5011) clipart/watercolor/comic-train (500/1000/1000)
Ours VOC2007-trainval (5011) clipart/watercolor/comic-train (500/1000/1000)

Table 11. Dataset splits used for Clipart/Watercolor/Comic

method achieved an AP50 of 42.34% on yolov5s whereas
the best baseline on yolov5m has an AP50 of only 37.79%.

8.3. Qualitative comparison on Clipart, Comic and

Watercolor

In Figures 8 and 9, we provide qualitative comparisons
with pseudo-labeling baselines (STAC [30] and DT+PL

[18]) and DeepAugment method using same Yolov5s
model. These comparisons illustrates the simplicity and
effectiveness of SimROD. Our proposed DomainMix aug-
mentation and teacher-guided gradual adaptation enabled to
leverage unlabeled target data and to mitigate the label noise
and domain shift. In contrast to DT+PL, SimROD did not
need to generate synthetic intermediate dataset and our pro-
posed augmentation is much simpler than DeepAugment.

Method Arch. Backbone Source AP50 Oracle ⌧ ⇢ Reference
DAF [6] F-RCNN V 30.10 39.00 - 8.90 - CVPR 2018
MAF [11] F-RCNN V 30.10 41.10 - 11.00 - ICCV 2019
RLDA [22] F-RCNN I 31.08 42.56 68.10 11.48 31.01 ICCV 2019
SCDA [38] F-RCNN V 34.00 43.00 - 9.00 - CVPR 2019
MDA [36] F-RCNN V 34.30 42.80 - 8.50 - ICCV 2019
SWDA [27] F-RCNN V 34.60 42.30 - 7.70 - CVPR 2019
Coarse-to-Fine [37] F-RCNN V 35.00 43.80 59.90 8.80 35.34 CVPR 2020
SimROD (self-adapt) YOLOv5 S320 33.62 38.73 48.81 5.11 33.66 Ours
SimROD (w. teacher X640) YOLOv5 S320 33.62 44.70 48.81 11.08 72.93 Ours
MTOR [4] F-RCNN R 39.40 46.60 - 7.20 - CVPR 2019
EveryPixelMatters [16] FCOS V 39.80 49.00 69.70 9.20 30.77 ECCV 2020
SimROD (self adapt) YOLOv5 S416 39.57 44.21 56.49 4.63 27.37 Ours
SimROD (w. teacher X640) YOLOv5 S416 39.57 51.68 56.49 12.10 71.53 Ours
SimROD (w. teacher X1280) YOLOv5 S416 39.57 52.05 56.49 12.47 73.73 Ours
SimROD (self-adapt) YOLOv5 M640 55.86 60.29 71.05 4.43 29.16 Ours
SimROD (w. teacher X640) YOLOv5 M640 55.86 62.18 71.05 6.33 41.64 Ours
SimROD (w. teacher X1280) YOLOv5 M640 55.86 64.40 71.05 8.54 56.24 Ours
SimROD (self-adapt) YOLOv5 X640 60.34 63.27 72.51 2.93 24.09 Ours
SimROD (self-adapt) YOLOv5 X1280 71.66 75.94 82.90 4.28 38.08 Ours

Table 12. Results of different method/model pairs for the Sim10K-to-Cityscapes adaptation scenario. “V”, “I” and “R” represent the
VGG16, ResNet50, Inception-v2 backbones respectively. ”S320”, “M416”, “X640”, “X1280” represent different scales of Yolov5 model
with increasing depth, width and input size. “Source” denotes that the model is trained only using source images without domain adaptation.
For fair comparison, we group together method/model pairs whose “Source” performance are similar. We report the AP50 (%) performance
of the adapted model and the “Oracle” model which is trained with labeled target data as well each method’s absolute and effective gains
(%) when available. ⌧ and ⇢ are the absolute gain and the effective gain respectively as defined in (1) and (2).



Method Arch. Backbone Source AP50 Oracle ⌧ ⇢ Reference
DAF [6] F-RCNN V 30.20 38.50 - 8.30 - CVPR 2018
MAF [11] F-RCNN V 30.20 41.00 - 10.80 - ICCV 2019
RLDA [22] F-RCNN I 31.10 42.98 68.10 11.88 32.11 ICCV 2019
PDA [17] F-RCNN V 30.20 43.90 55.80 13.70 53.52 WACV 2020
SimROD (self-adapt) YOLOv5 S416 31.61 35.94 56.15 4.33 17.65 Ours
SimROD (w. teacher X640) YOLOv5 S416 31.61 43.55 56.15 11.94 48.66 Ours
SimROD (w. teacher X1280) YOLOv5 S416 31.61 45.66 56.15 14.05 57.27 Ours
SCDA [38] F-RCNN V 37.40 42.60 - 5.20 - CVPR 2019
EveryPixelMatters [16] FCOS R 35.30 45.00 70.40 9.70 27.64 ECCV 2020
SimROD (self adapt) YOLOv5 M416 36.09 42.94 59.29 6.85 29.51 Ours
SimROD (w. teacher X640) YOLOv5 M416 36.09 45.29 59.29 9.19 39.64 Ours
SimROD (w. teacher X1280) YOLOv5 M416 36.09 47.52 59.29 11.43 49.26 Ours
SimROD (self-adapt) YOLOv5 X640 45.67 50.81 72.18 5.14 19.38 Ours
SimROD (self-adapt) YOLOv5 X1280 52.07 58.25 82.50 6.18 20.31 Ours

Table 13. Results of different method/model pairs on the KITTI to Cityscapes adaptation scenario. ⌧ and ⇢ are the absolute gain and the
effective gain respectively as defined in (1) and (2).

Method Arch. Backbone Source AP50 Oracle ⌧ ⇢ Reference
ADDA [34] SSD V 26.80 27.40 55.40 0.60 2.10 CVPR 2017
DT+PL [18] SSD V 26.80 46.00 55.40 19.20 67.13 CVPR 2018
DAF [6] F-RCNN V 26.20 22.40 50.00 -3.80 -15.97 CVPR 2018
DT+PL [18] F-RCNN V 26.20 34.90 50.00 8.70 36.55 CVPR 2018
SWDA [27] F-RCNN V 27.80 38.10 50.00 10.30 46.40 CVPR 2019
DAM [23] F-RCNN V 24.90 41.80 50.00 16.90 67.33 CVPR 2018
DeepAugment [12] YOLOv5 S416 29.32 31.65 56.07 2.33 8.71 arXiv 2020
BN-Adapt [19] YOLOv5 S416 29.32 37.43 56.07 8.11 30.32 NeurIPS 2020
Stylize [10] YOLOv5 S416 29.32 38.80 56.07 9.48 35.44 arXiv 2019
STAC [30] YOLOv5 S416 29.32 39.64 56.07 10.32 38.58 arXiv 2020
DT+PL [18] YOLOv5 S416 29.32 39.49 56.07 10.17 38.02 CVPR 2018
SimROD (self-adapt) YOLOv5 S416 29.32 41.28 56.07 11.96 44.72 Ours
SimROD (teacher X416) YOLOv5 S416 29.32 47.84 56.07 18.52 69.24 Ours

Table 14. Benchmark results on Real (VOC) to Clipart1k domain shift

Method Arch. Backbone Source AP50 Oracle ⌧ ⇢ Reference
ADDA SSD V 24.90 23.80 46.40 -1.10 -5.12 CVPR 2017
DT SSD V 24.90 29.80 46.40 4.90 22.79 CVPR 2018
DT+PL SSD V 24.90 37.20 46.40 12.30 57.21 CVPR 2018
DAF F-RCNN V 21.40 23.20 - 1.80 - CVPR 2018
DT F-RCNN V 21.40 29.80 - 8.40 - CVPR 2018
SWDA F-RCNN V 21.40 28.40 - 7.00 - CVPR 2019
DAM F-RCNN V 21.40 34.50 - 13.10 - CVPR 2019
DeepAugment YOLOv5 S416 18.19 21.39 39.81 3.20 14.80 arXiv 2020
BN-Adapt YOLOv5 S416 18.19 25.53 39.81 7.34 33.95 NeurIPS 2020
Stylize YOLOv5 S416 18.19 27.57 39.81 9.38 43.39 arXiv 2019
STAC YOLOv5 S416 18.19 26.40 39.81 8.21 37.97 arXiv 2020
DT+PL YOLOv5 S416 18.19 25.66 39.81 7.47 34.55 CVPR 2018
SimROD (self-adapt) YOLOv5 S416 18.19 29.54 39.81 11.35 52.50 Ours
SimROD (teacher X416) YOLOv5 S416 18.19 37.65 39.81 19.46 90.01 Ours
DeepAugment YOLOv5 M416 23.58 27.65 49.13 4.07 15.93 arXiv 2020
BN-Adapt YOLOv5 M416 23.58 32.04 49.13 8.46 33.11 NeurIPS 2020
Stylize YOLOv5 M416 23.58 34.56 49.13 10.98 42.97 arXiv 2019
STAC YOLOv5 M416 23.58 32.76 49.13 9.18 35.93 arXiv 2020
DT+PL YOLOv5 M416 23.58 33.53 49.13 9.95 38.94 CVPR 2018
SimROD (self-adapt) YOLOv5 M416 23.58 37.93 49.13 14.35 56.15 Ours
SimROD (teacher X416) YOLOv5 M416 23.58 42.08 49.13 18.50 72.41 Ours

Table 15. Benchmark results on Real (VOC) to Comic domain shift



Figure 5. Examples of prediction results on Sim10K to Cityscapes. We show predictions on the target test set before and after applying
SimROD as well as the ground-truth labels.



Figure 6. Comparison of performance with and without extra unlabeled data on Watercolor.

Figure 7. Performance comparison on Comic with and without extra unlabeled data.

9. More results on image corruptions

9.1. Results for different model sizes

Table 4, 5, and 6 show only the results for Yolov5m
model for Pascal-C, COCO-C, and Cityscapes-C respec-
tively. In Table 16, 17, and 18, we show that SimROD
consistently achieves higher performance compared to the
baselines across different model sizes and benchmarks. As
expected, larger models provided extra capacity and thus
higher Performance.

9.2. Per-corruption performance on Pascal-C

In the main paper, we reported the mAP, rPC, and ⌧c met-
rics, which were averaged over 15 corruption types. Here,
in Tables 19, 20, and 21, we provide a breakdown of the
results for each corruption type on the Pascal-C dataset for
the three YOLOv5 models.

9.3. Performance comparison with Augmix

Here, we compare our proposed method with Augmix
augmentation [14] and report the results on Pascal-C in Ta-
ble 22 and 23 for the models YOLOv5s and YOLOv5x re-
spectively. When comparing the mean performance under
corruption (mPC), we can see that Augmix performed the

worst among all augmentation-based baselines. Interest-
ingly, applying Augmix augmentation with DeepAugment
improved the performance of DeepAugment by +3.3%
AP50 and +1.03% AP50 on YOLOv5s and YOLOv5x mod-
els respectively. Nonetheless, SimROD still outperformed
DeepAument+Augmix by more than +5% AP50 on both
models. Although we have not tried, it is possible that ap-
plying Augmix on top of DomainMix may further improve
the performance of our proposed method.

9.4. Data efficiency analysis on Pascal-C

In Figure 10 and 11, we analyzed the data efficiency of
our proposed method using a YOLOv5s model and Pascal-
C dataset. For that, we used a subset of training datasets
and considered two scenarios. For both scenarios, we ran-
domly generated three different sets of data, measured the
performance in three runs. The average of the three runs are
plotted with error bars in Figure 10 and 11.

In the first scenario, we used all the available labeled
data from source domain consisting of 5011 images. On the
other hand, we used only a portion of the unlabeled images
available. As shown in Figure 10, our proposed method out-
performed STAC by a margin of 10% AP50. Moreover, our



Figure 8. Comparing various methods on examples from the Comic dataset.

Figure 9. Comparing various methods on examples from the Clipart dataset.

method achieved a relative robustness ⌧c of +21.75% AP50
and +16.61% AP50 using only 10% and 1% of unlabeled

target domain images respectively. Since the data was im-
balanced in this scenario, we also considered applying the



Method AP50
clean mPC50 rPC ⌧c

yolov5s

Source 75.87 42.38 55.86 0.00
Stylize 77.26 52.12 67.46 9.74
BN-Adapt 74.71 53.75 71.94 11.37
DeepAugment 77.89 55.42 71.15 13.04
STAC 80.11 56.12 70.05 13.74
SimROD (Ours) 80.08 67.95 84.85 25.57

Supervised training 80.44 71.18 88.49 28.80
yolov5m

Source 83.13 53.78 64.69 0.00
Stylize 84.79 62.92 74.21 9.14
BN-Adapt 83.01 64.60 77.82 10.82
DeepAugment 85.05 64.88 76.28 11.10
STAC 87.00 66.88 76.88 13.11
SimROD (Ours) 86.97 75.40 86.70 21.63

Supervised training 86.75 78.74 90.76 24.96
yolov5x

Source 87.42 62.84 71.88 0.00
Stylize 87.29 69.60 79.73 6.76
BN-Adapt 86.59 71.59 82.68 8.75
DeepAugment 87.78 72.15 82.19 9.31
STAC 89.57 73.68 82.25 10.84
SimROD (Ours) 89.24 78.48 87.95 15.64

Supervised training 88.88 82.56 92.89 19.72
Table 16. Performance comparison on Pascal-C benchmark

Method APclean mPC rPC ⌧c

yolov5s

Source 31.35 17.68 56.40 0.00
Stylize 30.07 18.99 63.15 1.31
BN-Adapt 30.91 20.09 64.99 2.40
DeepAugment 30.37 19.87 65.44 2.19
STAC 31.25 20.00 64.02 2.32
SimROD (Ours) 31.21 23.94 76.71 6.26

Supervised training 30.90 25.33 81.99 7.65
yolov5m

Source 36.85 22.03 59.79 0.00
Stylize 35.75 23.82 66.63 1.79
BN-Adapt 36.24 24.79 68.39 2.76
DeepAugment 35.51 24.33 68.52 2.30
STAC 36.76 24.80 67.46 2.77
SimROD (Ours) 36.79 28.46 77.36 6.43

Supervised training 36.23 30.16 83.26 8.13
yolov5x

Source 41.61 26.60 63.93 0.00
Stylize 40.38 28.16 69.73 1.56
BN-Adapt 41.70 29.77 71.40 3.17
DeepAugment 41.12 29.13 70.84 2.53
STAC 41.85 29.69 70.93 3.09
SimROD (Ours) 41.63 31.87 76.57 5.27

Supervised training 41.06 34.84 84.86 8.24
Table 17. Performance benchmark on COCO-C dataset

weighted balanced sampling to STAC. Figure 10 shows that
it could slightly improve the performance of STAC when
the datasets were very imbalanced.

In the second scenario, we used only a given percentage
of the available training data for both the source and target
domain. While this scenario assumes the datasets are bal-
anced, the total number of training images is much smaller
than in the previous scenario. For example, using 1% of
training data corresponds to a total of 165 images. With 1%
of training data, STAC could not adapt the model. In con-

trast, our proposed method provided a relative robustness
⌧c of +4.54% AP50 and +18.28% AP50 using only 1% and
10% of training data respectively.

These results confirm that our method was more data-
efficient. In particular, our DomainMix augmentation could
produce a diverse set of mixed samples even from very few
training images from both domains. When more unlabeled
data was available, our method could further leverage the
unlabeled data and provide strong supervision for adapta-
tion by mitigating the label noise.



Method APclean mPC rPC ⌧c

yolov5s

Source 17.08 9.50 55.62 0.00
Stylize 18.96 11.75 61.97 2.25
DeepAugment 17.24 11.39 66.07 1.89
STAC 20.34 12.82 63.02 3.32
SimROD (Ours) 19.82 14.95 75.45 5.45

Supervised training 22.30 19.35 86.77 9.85
yolov5m

Source 19.48 11.53 59.19 0.00
Stylize 21.77 14.62 67.16 3.09
DeepAugment 20.28 14.79 72.93 3.26
STAC 24.54 15.39 62.71 3.86
SimROD (Ours) 24.06 18.01 74.86 6.48

Supervised training 26.58 23.50 88.43 11.97
yolov5x

Source 25.65 16.63 64.83 0.00
Stylize 27.70 19.38 69.96 2.75
DeepAugment 25.12 18.80 74.84 2.17
STAC 29.62 20.98 70.85 4.35
SimROD (Ours) 29.27 21.70 74.15 5.07

Supervised training 31.48 27.66 87.87 11.03
Table 18. Performance benchmark on Cityscapes-C dataset

Noise Blur Weather Digital
Method APclean mPC Gauss. Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG
Source 75.87 42.38 32.71 35.32 28.24 43.02 32.96 39.87 29.05 37.09 43.53 59.66 69.21 42.00 47.04 46.53 49.48
Stylize 77.26 52.12 41.51 44.61 37.82 49.80 48.02 47.37 35.79 49.53 57.37 67.55 74.07 51.69 59.10 56.77 60.84
DeepAugment 77.89 55.42 50.48 53.12 48.67 55.38 49.23 48.87 37.58 49.73 58.19 70.29 74.91 56.88 51.61 63.39 62.99
BN Adapt 74.71 53.75 48.07 51.22 46.00 53.23 44.34 48.60 38.63 50.56 55.80 68.50 73.34 57.18 59.32 52.86 58.55
STAC 80.11 56.12 46.85 49.78 44.08 58.41 45.38 51.99 41.68 53.39 59.80 74.01 78.91 59.85 61.76 56.14 59.78
SimROD

(Ours)

80.08 67.95 64.91 66.11 65.28 65.12 63.03 65.54 53.99 69.19 69.27 76.85 79.14 71.38 73.52 65.54 70.34

Oracle 80.44 71.18 68.28 69.14 68.10 68.18 67.84 69.77 62.19 71.41 71.26 77.49 79.95 73.41 75.90 70.40 74.41
Table 19. Performance comparison per corruption type for YOLOv5s model on Pascal-C benchmark

9.5. Effects of corruption severity levels

To apply our method on the image corruption bench-
mark, we applied a corruption severity level of 3 for cre-

Figure 10. mPC performance of YOLOv5s on Pascal-C for a given percentage of unlabeled target data and using 100% source data.



Noise Blur Weather Digital
Method APclean mPC Gauss. Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG
Source 83.13 53.78 47.44 51.35 44.98 53.87 42.17 48.61 36.64 51.77 56.29 71.74 78.82 55.81 56.43 54.52 56.17
Stylize 84.79 62.92 53.44 57.56 52.62 60.18 57.42 57.53 45.32 63.02 67.50 78.02 81.91 65.64 69.69 66.10 67.86
DeepAugment 85.05 64.88 61.75 64.06 60.64 63.74 57.95 56.18 44.75 62.31 68.27 79.36 82.69 68.34 61.92 71.40 69.78
BN Adapt 83.01 64.60 61.06 63.83 60.54 62.33 55.29 58.77 46.71 65.44 67.88 78.34 81.62 69.48 68.81 62.15 66.75
STAC 87.00 66.88 61.46 64.77 60.73 67.17 55.54 61.35 49.57 68.41 71.20 82.52 85.90 71.83 69.92 65.61 67.25
SimROD

(Ours)

86.97 75.40 72.00 74.11 73.01 72.65 70.25 72.85 60.65 77.81 77.47 84.03 86.17 79.66 80.49 72.54 77.36

Oracle 86.75 78.74 76.35 76.68 76.42 75.63 75.12 77.10 70.31 80.07 79.56 84.25 86.15 80.60 82.88 78.73 81.22
Table 20. Performance comparison per corruption type for YOLOv5m model on Pascal-C benchmark

Noise Blur Weather Digital
Method APclean mPC Gauss. Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG
Source 87.42 62.84 59.30 61.06 58.38 61.45 51.43 58.48 41.79 63.82 66.34 77.28 84.25 65.77 64.40 63.07 65.79
Stylize 87.29 69.60 62.44 65.03 62.20 67.57 63.64 65.13 50.84 70.44 74.10 82.44 85.30 74.16 74.73 72.76 73.25
DeepAugment 87.78 72.15 71.25 73.27 71.16 71.40 64.70 65.57 49.76 71.42 74.91 84.17 86.43 77.48 68.75 77.16 74.88
BN Adapt 86.59 71.59 71.05 72.63 70.94 67.90 63.70 66.55 52.41 72.79 73.91 82.38 84.62 76.03 74.96 70.51 73.43
STAC 89.57 73.68 71.77 73.40 71.71 72.57 64.51 69.37 52.81 76.21 77.68 85.04 88.40 78.87 75.92 72.69 74.23
SimROD

(Ours)

89.24 78.48 76.09 78.31 77.23 75.85 73.11 75.29 62.75 81.10 80.96 86.62 88.16 82.94 82.45 76.64 79.69

Oracle 88.88 82.56 81.14 81.96 81.27 79.10 79.08 80.65 73.97 83.58 83.66 87.18 88.54 84.03 85.55 84.09 84.57
Table 21. Performance comparison per corruption type for YOLOv5x model on Pascal-C benchmark

ating the unlabeled target domain images. In this section,
we present additional analysis to understand the effects of
corruption severity of the training images on the test perfor-
mance. In Fig. 12 and 13, we show the relative robustness ⌧
and mean performance under corruption mPC of an adapted
Yolov5s model using our method. Similarly, Fig. 14 and 15
show the same metrics for an adapted YOLOv5x model.

The corruption types are sorted in ascending order based
on the performance of the source model on these types. For
instance, the source models achieved the highest mPC on
fog and lowest mPC on impulse noise. This explains that
the relative robustness on fog was lower compared to those
on other corruption types because the source model already
achieved high mPC on fog. Notable improvements were
observed on the other corruption types.

Fig. 12 and 13 show that the adapted YOLOv5s model
enjoyed higher improvement on test datasets with higher
severity levels. More importantly, high improvements could
be achieved when the training images have severity levels

similar to those of the test images. This means that using
unlabeled target-domain samples is effective as long as they
are representative of the actual test set.

9.6. Qualitative comparison on image corruptions

Fig. 16 illustrates how various methods handle the glass
blur corruption (severity 5) on Pascal-C sample. In addition,
Fig. 17 shows results of various methods across a range of
severity levels for the glass blur corruption. We see that the
proposed method was more effective in handling the cor-
ruptions. In contrast to the baseline methods, our adaptation
method detected most objects in the images and make fewer
classification errors. We could also observe that the source
model completely failed to detect objects in most cases.

9.7. More detailed ablations on the components

Table 24 expands the ablation study provided in the main
paper onto various model sizes.

Method APclean mPC
Source 75.87 42.38
Augmix 79.42 46.94
Stylize 77.26 52.12
DeepAugment 77.89 55.42
DeepAugment+Augmix 80.85 60.15
SimROD (Ours) 80.08 67.95

Table 22. Augmix comparison for YOLOv5s model on Pascal-C.

Method APclean mPC
Augmix 87.46 62.31
Source 87.42 62.84
Stylize 87.29 69.60
DeepAugment 87.78 72.15
DeepAugment+Augmix 88.36 73.18
SimROD (Ours) 89.24 78.48

Table 23. Augmix comparison for YOLOv5x model on Pascal-C.



Figure 11. mPC performance of YOLOv5s on Pascal-C for a given percentage of training data (source and target).

Figure 12. Relative robustness improvement on YOLOv5s using our method for specific corruption types and severity levels on Pascal-C.

Figure 13. Final mPC performance of YOLOv5s using our method for specific corruption types and severity levels on Pascal-C.

Figure 14. Relative robustness improvement on YOLOv5x using our method for specific corruption types and severity levels on Pascal-C.



Figure 15. Final mPC performance of YOLOv5x using our method for specific corruption types and severity levels on Pascal-C.

Figure 16. Demonstration of how different methods handle glass blur corruption (severity 5); images from Pascal-C.

10. Dataset and DomainMix visualizations

Fig. 18 and 19 show examples of the domain-mixed im-
ages produced by the DomainMix augmentation from dif-

ferent datasets. Note that the images used to form domain-
mixed examples, are randomly cropped, and may occupy a

Model Method TG DomainMix BN-Adapt Finetune Corrupt AP50 ⌧c

Source 42.38 0.00
BN-Adapt X 53.75 11.37
BN-Adapt + DomainMix X X 56.13 13.75

yolov5s SimROD (Ours) w/o Teacher Guidance X X X 60.35 17.97
SimROD (Ours) w/o Gradual Adaptation X X X 67.87 25.49
Our full method (SimROD) X X X X 67.95 25.57
Source 53.78 0.00
BN-Adapt X 64.60 10.82
BN-Adapt + DomainMix X X 66.78 13.01

yolov5m SimROD (Ours) w/o Teacher Guidance X X X 71.81 18.03
SimROD (Ours) w/o Gradual Adaptation X X X 73.45 19.67
Our full method (SimROD) X X X X 75.40 21.62
Source 62.84 0.00
BN-Adapt X 71.83 8.99
BN-Adapt + DomainMix X X 73.64 10.80

yolov5x SimROD (Ours) w/o Gradual Adaptation X X X 75.58 12.74
SimROD (Ours) w/o Teacher Guidance X X X 78.16 15.32
Our full method (SimROD) X X X X 78.48 15.64

Table 24. Ablation study on Pascal-C dataset



Figure 17. Demonstration of how different methods handle glass blur corruption at different severity levels; image from Pascal-C.

different height and width of the final image.



Figure 18. Examples of DomainMix image samples on Pascal-C dataset with various corruption types.



Figure 19. Examples of DomainMix image samples on Watercolor dataset.


