
6. Appendix
The sections in this Appendix follow a similar order to

their related sections in the main paper. We first illustrate
the reweighting of the loss components in Appendix 6.1.
Appendix 6.2 elaborates on our analysis of filters activity.
Appendix 6.3 clarifies our framework generalization with
M > 2 subnetworks. We describe in greater details our
implementation in Appendix 6.4, and then our evaluation
setting in 6.5. Appendix 6.6 showcases training dynamics.
We provide a quick refresher on common MSDA techniques
in Appendix 6.7. Appendix 6.8 studies the importance of
α. Appendix 6.9 is a preliminary study of MixMo on Im-
ageNet. Appendix 6.10 analyzes ensembles of Cut-MixMo
with CutMix that reach state of the art. Finally, we provide
a pseudocode in Algorithm 1.

6.1. Weighting function wr

As outlined in Section 3.3, the asymmetry in the mixing
mechanism leads to asymmetry in the relative importance
of the two inputs. Thus we reweight the loss components
with function wr, defined as wr(κ) = 2 κ1/r

κ1/r+(1−κ)1/r
. It

rescales the mixing ratio κ through the use of a 1
r root oper-

ator. In the main paper, we have focused on r = 3.
Fig. 11 illustrates how wr behaves for r ∈ {1, 2, 3, 4, 10}

and r → ∞. The first extreme r = 1 matches the diagonal
wr(κ) = 2κ, without rescaling of κ, similarly to what is
customary in MSDA. Our experiments in Section 4.3.3 jus-
tified the initial idea to shift the weighting function closer
to the horizontal and constant curve wr(κ) = 1 with higher
r. In the other experiments, we always set r = 3.

Figure 11: Curves of the reweighting operation that
projects κ to the flattened ratio wr(κ)

6.2. Filters activity

We argued in Section 3.4 that MixMo better leverages
additional parameters in wider networks. Concretely, a

Table 7: Proportion (%) of active filters in core network
vs. width w for a WRN-28-w on CIFAR 100 and different
activity thresholds ta.

Method Width ta = 0.2 ta = 0.3 ta = 0.4 ta = 0.5

Vanilla

2 98.9 98.8 97.8 93.3
3 97.3 96.4 93.2 87.5
4 96.5 95.2 91.2 81.6
5 95.1 91.7 85.7 73.3
7 92.6 88.2 81.0 69.5

10 87.8 80.4 71.5 57.3
14 83.9 74.0 61.6 46.8

CutMix

2 99.2 99.0 97.8 95.3
3 98.7 98.5 97.2 93.4
4 98.1 97.4 94.0 87.3
5 97.0 96.1 90.7 80.6
7 95.8 94.0 86.2 74.6

10 93.5 88.4 81.3 67.0
14 89.4 81.9 70.3 50.9

Cut-MixMo

2 100.0 100.0 99.4 97.3
3 99.8 99.8 99.7 98.7
4 99.7 99.7 99.6 98.7
5 99.3 99.3 98.9 97.4
7 98.9 98.8 98.0 95.2

10 98.5 98.2 96.8 92.4
14 97.5 96.3 93.1 82.6

larger proportion of filters in large networks really help for
classification as demonstrated in Fig. 4a and 4b in the main
paper. Following common practices in the structured prun-
ing literature [47], we used the l1-norm of convolutional
filters as a proxy for importance. These 3D filters are of
shape ni × k × k with ni the number of input channels and
k the kernel size. In Fig. 4b, we arbitrarily defined a filter
as active if its l1-norm is at least 40% of the highest filter
l1-norm in that filter’s layer. We report the average percent-
age of active filters across all filters in the core network C,
for 3 learning strategies: vanilla, CutMix and Cut-MixMo.

The threshold ta = 0.4 was chosen for visualization pur-
poses. Nevertheless, the observed trend in activity propor-
tions remains for varying thresholds in Tab. 7. For example,
for the lax ta = 0.2, CutMix uses 93.5% of filters vs. 98.5%
for Cut-MixMo.

6.3. Generalization to M > 2 heads

We have mostly discussed our MixMo framework with
M = 2 subnetworks. For better readability, we re-
ferred to the mixing ratios κ and 1 − κ with κ ∼
Beta(α, α). It’s equivalent to a more generic formulation
(κ0, κ1) ∈ Dir2(α) from a symmetric Dirichlet distribu-
tion with concentration parameter α. This leads to the
alternate equations LMixMo =

∑
i=0,1 wr(κi)LCE (yi, ŷi),

where wr(κi) = 2
κ
1/r
i∑

j=0,1 κ
1/r
j

.

Now generalization to the general case M ≥ 2 is
straightforward. We draw a tuple {κi}0≤i<M ∼ DirM (α)



and optimize the training loss:

LMixMo =

M−1∑
i=0

wr(κi)LCE (yi, ŷi) , (4)

where the new weighting naturally follows:

wr(κi) = M
κ
1/r
i∑M−1

j=0 κ
1/r
j

,∀i ∈ {0, . . . ,M − 1}. (5)

The remaining point is the generalization of the mixing
block M, that relies on the existence of MSDA methods
for M > 2 inputs. The linear interpolation can be easily
expanded as in Mixup:

MLinear-MixMo ({li}) = M

M−1∑
i=0

κili, (6)

where li = ci(xi). However, extensions for other mask-
ing MSDAs have only recently started to emerge [40]. For
example, CutMix is not trivially generalizable to M > 2,
as the patches could overlap and hide important semantic
components. In our experiments, a soft extension of Cut-
MixMo performs best: it first linearly interpolates M − 1
inputs and then patches a region from the M -th:

MCut-MixMo ({li}) = M [1M⊙lk+

(1− 1M)⊙
M−1∑

i=0,i̸=k

κi

1− κk
li],

(7)

where 1M is a rectangle of area ratio κk and k sampled
uniformly in {0, 1, . . . ,M − 1}. However, it has been less
successful than M = 2, as only two subnetworks can fit
independently in standard parameterization regimes. Fu-
ture work could design new framework components, such
as specific mixing blocks, to tackle these limits.

6.4. Implementation details

We first used the popular image classification datasets
CIFAR-100 and CIFAR-10 [42]. They contain 60k 32× 32
natural and colored images in respectively 100 classes and
10 classes, with 50k training images and 10k test images.
At a larger scale, we study Tiny ImageNet [10], a down-
sampled version of ImageNet [12]. It contains 200 different
categories, 100k 64 × 64 training images (i.e. 500 images
per class) and 10k test images.

Our code was adapted from the official MIMO [30]
implementation1. For CIFAR, we re-use the hyper-
parameters from MIMO [30]. The optimizer is SGD with
learning rate of 0.1

b ×
batch-size

128 , batch size 64, linear warmup
over 1 epoch, decay rate 0.1 at steps {100, 200, 225}, l2

1https://github.com/google/edward2/

regularization 3e-4. We follow standard MSDA practices
[2, 41, 83] and set the maximum number of epochs to 300.
For Tiny ImageNet, we adapt PreActResNet-18-w, with
w ∈ {1, 2, 3} times more filters. We re-use the hyper-
parameters from Puzzle-Mix [41]. The optimizer is SGD
with learning rate of 0.2

b , batch size 100, decay rate 0.1 at
steps {600, 900}, 1200 epochs maximum, weight decay 1e-
4. Our experiments ran on a single NVIDIA 12Go-TITAN
X Pascal GPU. All results without a † were obtained with
these training configurations. We will soon release our code
and pre-trained models to facilitate reproducibility.

Batch repetition increases performances at the cost of
longer training, which may be discouraging for some prac-
titioners. Thus in addition to b = 4 as in MIMO [30], we
often consider the quicker b = 2. Note that most of our con-
current approaches also increase training time: DE [43] via
several independent trainings, Puzzle-Mix [41] via saliency
detection (≈ ×2), GradAug [82] via multiple subnetworks
predictions (≈ ×3) or Mixup BA [36] via 10 batch augmen-
tations (≈ ×7 with our hardware on a single GPU).

MixMo operates in the features space and is comple-
mentary with pixels augmentations, i.e. cropping, Aug-
Mix. The standard vanilla pixels data augmentation [31]
consists of 4 pixels padding, random cropping and hori-
zontal flipping. When combined with CutMix, notably to
benefit from multilabel smoothing, the input may be of the
form: (mx(xi, xk, λ), xj), where xk is randomly chosen
in the whole dataset, and not only inside the current batch2.
Moreover,MCut-MixMo modifies by 1M the visible part from
mask 1m (of area λ). We thus modify targets accordingly:
(λ′yi+(1−λ′)yk, yj) where λ′ =

∑
1m⊙1M∑

1M
. To fully ben-

efit from b, we force the repeated xi to remain predominant
in its b appearances: i.e., we swap xi and xk if λ′ < 0.5.
We see CutMix as a perturbation on the main batch sample.

Distributional uncertainty measures help when there is
a mismatch between train and test data distributions. Thus
[34] introduced CIFAR-100-c on which AugMix performs
best. AugMix sums the pixels from a chain of several aug-
mentations and is complementary to our approach in fea-
tures. We use default parameters3: the severity is set 3,
the mixture’s width to 3 and the mixture’s depth to 4. We
exclude operations in AugMix which overlap with CIFAR-
100-c corruptions: thus, [equalize, posterize, rotate, solar-
ize, shear_x, shear_y, translate_x, translate_y] remain. We
disabled the Jensen-Shannon Divergence loss between pre-
dictions for the clean image and for the same image Aug-
Mix augmented: that would otherwise triple the training
time. For comparison of out-of-domain uncertainty estima-
tions, we report NLL as in [30, 58]: indeed, the recommen-
dation of [2] to apply TS only stands for in-domain test set.

2Following https://github.com/ildoonet/cutmix
3https://github.com/google-research/augmix/

blob/master/cifar.py

https://github.com/google/edward2/
https://github.com/ildoonet/cutmix
https://github.com/google-research/augmix/blob/master/cifar.py
https://github.com/google-research/augmix/blob/master/cifar.py


Figure 12: Training dynamics. Higher probability p of binary mixing via patches increases diversity (lower right), and also
subnetworks accuracy (lower left) but only up to p = 0.6. Around this value, we obtain best ensemble performances, in terms
of accuracy (upper left) or uncertainty estimation (upper right). b = 2, r = 3, α = 3 with WRN-28-10 on CIFAR-100.

Table 8: WRN-28-10 on CIFAR without early stopping.

Dataset CIFAR-100 CIFAR-10

Approach
Time

Tr./Inf.
Top1
%, ↑

Top5
%, ↑

NLLc

10−2, ↓
NLL
10−2, ↓

ECE
10−2, ↓

Top1
%, ↑

NLLc

10−2, ↓
NLL
10−2, ↓

ECE
10−2, ↓

Vanilla

1/1

81.47 95.57 73.6 76.2 6.47 96.31 12.5 14.1 1.95
Mixup 83.15 95.75 66.3 67.3 1.62 97.00 11.3 11.5 0.97

Hard PatchUp† 83.87 - - 66.0 - 97.47 - 11.4 -
CutMix 83.74 96.18 65.4 66.1 4.95 97.21 9.7 10.8 1.51

Puzzle-Mix† 2/1 84.05 96.08 66.9 68.1 2.76 - - - -

GradAug† 3/1 83.98 96.28 - - - - - - -
+ CutMix† 85.25 96.85 - - - - - - -

Mixup BA† 7/1 84.30 - - - - 97.80 - - -

DE (2 Nets) 2/2 83.15 96.30 66.0 67.2 5.15 96.58 11.1 12.2 1.82
+ CutMix 85.46 96.90 57.4 57.5 3.62 97.51 8.7 9.0 1.16

MIMO (M = 2)

2/1

82.04 95.75 69.1 72.4 6.32 96.33 12.1 13.4 1.89

Linear-MixMo 81.88 95.97 67.8 70.3 6.20 96.55 11.4 12.5 1.67
+ CutMix 84.55 96.95 57.4 57.5 2.54 97.34 8.9 9.3 1.34

Cut-MixMo 84.07 96.97 56.6 57.9 4.19 97.26 8.7 9.1 0.98
+ CutMix 85.17 97.28 54.4 54.5 2.13 97.33 8.5 8.6 0.88

MIMO (M = 2)

4/1

82.74 95.90 67.0 74.0 7.56 96.66 11.5 13.6 1.98
MIMO† (M = 3) 82.0 - - 69.0 2.2 96.4 - 12.3 1.0

Linear-MixMo 82.53 96.08 65.8 68.5 6.64 96.78 10.8 11.8 1.80
+ CutMix 85.24 96.97 56.3 56.4 3.53 97.53 8.8 8.6 1.19

Cut-MixMo 85.32 97.12 53.6 54.8 4.53 97.42 8.1 8.4 1.15
+ CutMix 85.59 97.33 53.2 53.3 1.95 97.70 8.0 8.2 0.98

6.5. Evaluation setting and metrics

We reproduce the experimental setting from CutMix
[83], Manifold Mixup [76] and other works such as the re-
cent state-of-the-art ResizeMix [63]: in absence of a vali-
dation dataset, results are reported at the epoch that yields
the best test accuracy. For fair comparison, we apply this
early stopping for all concurrent approaches. Nonetheless,
for the sake of completeness, Table 8 shows results with-
out early stopping on the main experiment (CIFAR with a
standard WRN-28-10). We recover the exact same ranking
among methods as in Table 1.

Following recent works in ensembling [9, 50, 64], we
have mainly focused on the NLLc metric for in-domain
test set. Indeed, [2] have shown that “comparison of [. . .]
ensembling methods without temperature scaling (TS) [25]
might not provide a fair ranking”. Nevertheless in Table 8,
we found that Negative Log-Likelihood (NLL) (without TS)

leads to similar conclusions as NLLc (after TS).

The TS even mostly seems to benefit to poorly cal-
ibrated models, as shown by the calibration criteria Ex-
pected Calibration Error (ECE, ↓, 15 bins). ECE mea-
sures how confidences match accuracies. MixMo attenuates
over-confidence in large networks and thus reduces ECE. In
our case, combining ensembling and data augmentation im-
proves calibration [79]. Note that the appropriate measure
of calibration is still under debate [56]. Notably, [2] have
also stated that, despite being widely used, ECE is biased
and unreliable: we can confirm that we found ECE to be
dependant to hyper-parameters and implementation details.
Due to space constraints and these pitfalls, we have not in-
cluded this controversial metric in the main paper.

6.6. Training dynamics

Fig. 12 showcases training dynamics for probability p ∈
[0, 1] of patch mixing (see Section 4.3.2). In the remaining
1 − p, we interpolate features linearly. For p = 0, we re-
cover our Linear-MixMo; for p = 0.5, we recover our Cut-
MixMo. In all approaches, p is linearly reduced towards 0
beyond the 11

12 of the training epochs, i.e. from epoch 275
to 300 on CIFAR. As we sum at inference, this reduces the
train-test distribution gap and slightly increases individual
accuracy during the final epochs (lower left in Fig. 12).

Diversity is measured by the ratio-error, the ratio be-
tween the number of samples on which only one of the two
predictor is wrong, divided by the number of samples on
which they are both wrong. It is positively correlated with
p. However, individual accuracies first increase with p until
p = 0.6, then the tendency is reversed. Overall, best en-
semble performances in terms of accuracy (Top1) and un-
certainty (NLL) estimation are obtained with p ∈ [0.5, 0.6].
Most importantly, we note that the performance gaps are
consistent and stable along training.



6.7. Mixed sample data augmentations

We have drawn inspiration from MSDA techniques to
design our mixing block M. In particular, Section 4.3.2
compared differentM based on recent papers. Fig. 13 pro-
vides the reader a visual understanding of their behaviour,
which we explain below.

MixUp [86] linearly interpolates between pixels values:
mx(xi, xk, λ) = λxi + (1 − λ)xk. The remaining meth-
ods fall under the label of binary MSDA: mx(xi, xk, λ) =
1m ⊙ xi + (1 − 1m) ⊙ xk with 1m a mask with binary
values {0, 1} and area of ratio λ. They diverge in how this
mask is created. The horizontal concatenation, also found
in [68], simply draws a vertical line such that every pixel to
the left belongs to one sample and every pixel to the right
belongs to the other. Similarly, we define a vertical con-
catenation with an horizontal line. PatchUp [17] adapted
DropBlock [24]: a canvas C of patches is created by sam-
pling for every spatial coordinate from the Bernoulli distri-
bution Ber(λ′) (where λ′ is a recalibrated value of λ): if the
drawn binary value is 1, a patch around that coordinate is
set to 1 on the final binary mask 1m. PatchUp was designed
for in-manifold mixing with a different mask by channels.
However, duplicating the same 2D mask in all channels for
M performs better in our experiments. FMix [29] selects
a large contiguous region in one image and pastes it onto
another. The binary mask is made of the top-λ percentile
of pixels from a low-pass filtered 2D map G drawn from an
isotropic Gaussian distribution. CowMix [20, 21] selects a
cow-spotted set of regions, and is somehow similar to FMix
with a Gaussian filtered 2D map G. CutMix [83] was in-
spired by CutOut [13]. Formally, we sample a square with
edges of length R

√
λ, where R is the length of an image

edge. Note that this sometimes leads to non square rect-
angles when the initially sampled square overlaps with the
edge from the original image. We adjust our λ a posteriori

Figure 13: Common MSDA procedures with λ = 0.5.

to fix this boundary effect. Regarding the hyper-parameters,
we use inM those provided in the seminal papers, except
for sampling of κ where we set α = 2 in all setups.

Note we consider both versions of MixUp (in-pixel and
manifold) in this paper, but only the in-pixel version of Cut-
Mix. Indeed, the manifold version of CutMix was shown in
the seminal CutMix paper [83] to be inferior to the standard
in-pixel variant.

6.8. Hyper-parameter α

In Fig. 14, we study the impact of different values of α,
parameterizing the sampling law for κ ∼ Beta(α, α). For
high values of α, the interval of κ narrows down around
0.5. Diversity is therefore decreased: we speculate this
is because we do not benefit anymore from lopsided up-
dates. The opposite extreme, when α=1, is equivalent to
uniform distribution between 0 and 1. Therefore diversity
is increased, at the cost of lower individual accuracy due to
less stable training. For simplicity, we set α=2. Manifold-
Mixup [76] selected the same value on CIFAR-100. How-
ever, this value could be fine tuned on the target task: e.g.
in Fig. 14, α=4 seems to perform best for Cut-MixMo on
CIFAR-100 with WRN-28-10 with r=3, p=0.5 and b=2.

Figure 14: Diversity/accuracy as function of α.

6.9. Preliminary ImageNet experiments

To further prove MixMo’s ability to scale to more com-
plex problems, we also conduct a preliminary study of its
behavior on the larger scale ImageNet dataset [12]. Fol-
lowing the protocol outlined in the seminal MIMO paper
[30], we consider variations on the standard ResNet-18 in
the form of ResNet-18-w networks where w is multiplica-
tive width factor.

These first experiments confirm that MixMo performs
well when networks are overparameterized. For values
of w ≥ 5, our network at the end of training outper-
forms both Vanilla and CutMix baselines. For example,
with a ResNet-18-5 backbone, Cut-MixMo (78.20% Top1,
0.867 NLLc) improves over Vanilla (76.47%, 1.121) and
CutMix (77.40%, 1.263). This remains the case for a
ResNet-18-7 backbone with Cut-MixMo (78.55% Top1,
0.846 NLLc) outperforming Vanilla (76.86%, 1.100) and
CutMix (77.18%, 1.190).



Table 9: Summary: WRN-28-w on CIFAR-100. b = 4.

Width Approach 1-Net 2-Nets Linear-MixMo Cut-MixMo 2-Cut-MixMos
w CutMix - ✓ - ✓ - ✓ - ✓ - ✓

2
Top1 76.44 78.06 79.16 80.81 75.82 76.36 75.66 75.17 76.98 76.11
NLLc 0.921 0.815 0.776 0.695 0.841 0.824 0.824 0.846 0.7661 0.798

# params 1.48M 2.95M 1.49M 2.99M

3
Top1 77.95 80.70 80.85 83.14 78.51 80.74 79.81 79.85 80.78 81.20
NLLc 0.862 0.750 0.738 0.644 0.760 0.696 0.693 0.702 0.635 0.650

# params 3.31M 6.62M 3.33M 6.66M

4
Top1 78.84 81.55 81.48 83.93 80.43 81.66 81.68 81.69 82.57 82.58
NLLc 0.824 0.711 0.711 0.609 0.712 0.656 0.646 0.635 0.590 0.588

# params 5.87M 11.74M 5.89M 11.79M

5
Top1 79.75 82.55 82.18 84.60 80.95 83.06 83.11 83.34 83.97 84.31
NLLc 0.813 0.686 0.693 0.596 0.703 0.617 0.598 0.591 0.549 0.546

# params 9.16M 18.32M 9.19M 18.39M

7
Top1 81.14 83.71 82.94 85.52 82.4 84.51 84.32 84.94 85.50 85.90
NLLc 0.764 0.648 0.673 0.573 0.675 0.581 0.562 0.543 0.516 0.498

# params 17.92M 35.85M 17.97M 35.94M

10
Top1 81.63 84.05 83.17 85.74 83.08 85.47 85.40 85.77 86.04 86.63
NLLc 0.750 0.644 0.668 0.571 0.656 0.558 0.535 0.524 0.494 0.479

# params 36.53M 73.07M 36.60M 73.21M

14
Top1 82.01 84.31 83.47 85.80 83.79 86.05 85.76 86.19 86.58 87.11
NLLc 0.730 0.645 0.656 0.569 0.648 0.545 0.527 0.518 0.488 0.473

# params 71.55M 143.1M 71.64M 143.28M

6.10. Ensemble of Cut-MixMo with CutMix

Fig. 15 plots performance for different widths w in
WRN-28-w and varying number of ensembled networks
N : two vertically aligned points have the same parame-
ter budget. Indeed, the total number of parameters in our

Figure 15: Ensemble effectiveness (NLLc/#params). We
slide the width in WRN-28-w and numbers of members N .
CutMix data augmentation. Interpolations through power
laws [50] when more than 2 points are available.

architectures has been used as a proxy for model com-
plexity, as in [9, 50]. The increase in the total num-
ber of weights in MixMo is visually almost unnoticeable.
Precisely, with WRN-28-10, MixMo (M=2) has 36.60M
weights vs. 36.53M standardly (+0.2%). Moreover, the
number of flops is 5.9571G Flops for MixMo vs. 5.9565G
Flops standardly (+0.01%). That’s why we state we achieve
ensembling (almost) “for free”.

We compare ensembling with CutMix rather than stan-
dard pixels data augmentation, as previously done in Fig. 6
from Section 4.6. CutMix induces additional regularization
and label smoothing: empirically, it improves all our ap-
proaches. For a fixed memory budget, a single network usu-
ally performs worse than an ensemble of several medium-
size networks: we recover the Memory Split Advantage
even with CutMix. However, Cut-MixMo challenges this
by remaining closer to the lower envelope. In other words,
parameters allocation (more networks or bigger networks)
has less impact on results. This is due to Cut-MixMo’s abil-
ity to better use large networks.

In Table 9, we summarize several experiments on
CIFAR-100. Among other things, we can observe that large
vanilla networks tend to gain less from ensembling [50]:
e.g. 2 vanillas WRN-28-10 (83.17% Top1, 0.668 NLLc)



do not perform much better than 2 WRN-28-7 (82.94%,
0.673). This remains true even with CutMix: (85.74%,
0.571) vs. (85.52%, 0.573). We speculate this is related
to wide networks’ tendency to converge to less diverse so-
lutions, as studied in [55]. Contrarily, MixMo improves
the ensembling of large networks, with (86.04%, 0.494)
vs. (85.50%, 0.517) on the same setup. When additionally
combined with CutMix, we obtain state of the art (86.63%,
0.479) vs. (85.90%, 0.498). This demonstrates the impor-
tance of Cut-MixMo in cooperation with standard pixels
data augmentation. It attenuates the drawbacks from over-
parameterization This is of great importance for practical
efficiency: it modifies the optimal network width for real-
world applications.

6.11. Pseudo Code

Finally, the pseudocode in Algorithm 1 describes the
procedure behind Cut-MixMo with M = 2.



Algorithm 1: Procedure for Cut-MixMo with M = 2 subnetworks

/* Setup */
Parameters: First convolutions {c0, c1}, dense layers {d0, d1} and core network C, randomly initialized.
Input: Dataset D = {xi, yi}|D|

i=1, probability p of applying binary mixing via patches, reweighting coefficient r,
concentration parameter α, batch size bs, batch repetition b, optimizer g , learning rate lr.

/* Training Procedure */
1 for epoch from 1 to #epochs do
2 for step from 1 to |D|×b

bs
do

/* Step 1: Batch creation */

3 Randomly select bs
b samples // Sampling

4 Duplicate these samples b times to create batch {xi, yi}i∈B of size bs // Batch repetition
5 Randomly shuffle B with π to create {(xi, xj), (yi, yj)}i∈B,j=π(i) // Shuffling

/* Step 2: Define the mixing mechanism at the batch level */
6 if epoch > 11

12 × #epochs then
7 pe = p #epochs−epoch

1
12×#epochs // Linear descent to 0 over the last twelfth of training

8 else
9 pe = p

10 Sample 1binary ∼ Ber(pe) from Bernoulli distribution // Whether we apply binary or linear
mixing

11 Sample 1outside ∼ Ber(0.5) // Whether the first input is inside or outside the
rectangle
/* Step 3: Forward and loss */

12 for i ∈ B do
13 Sample κi ∼ Beta(α, α)
14 l0i = c0(xi) and l1i = c1(xπ(i))
15 if 1binary then
16 Sample 1M a rectangular binary mask with average κi (as in CutMix)
17 if 1outside then
18 1M ← 1− 1M // Permute the rectangle and its complementary
19 κi ← 1− κi

20 li = 2 [1M⊙l0 + (1− 1M)⊙l1] // Apply binary mixing
21 else
22 li = 2 [κil0 + (1− κi)l1] // Apply linear interpolation

23 Extract features fi ← C(li) from core network
24 Compute predictions ŷ0i ← d0(fi) and ŷ1i ← d1(fi)

25 Compute weights wi ← 2
κ
1/r
i

κ
1/r
i +(1−κi)1/r

26 Compute loss Li ← wiLCE

(
yi, ŷ

0
i

)
+ (2− wi)LCE

(
yπ(i), ŷ

1
i

)
27 Average loss LMixMo ← 1

|B|
∑
Li

/* Step 4: Back propagation */

28 c0, c1, C, d0, d1 ← g
(
gradient = ∇LMixMo, learning rate = lr

b

)
/* Test Procedure */
Data: Inputs {xi}Ti=1 // Test Data

29 for i ∈ {1, . . . , T} do
30 Extract features fi = C (c0(xi) + c1(xi))

Output: 1
2 [d0(fi) + d1(fi)])


