
Supplementary: Orthogonal Projection Loss

In this supplementary document we include:

– Additional experimentation on ImageNet dataset (Ap-
pendix A.1).

– Additional comparisons with the baseline on MNIST
dataset (Appendix A.2).

– OPL performance with scalable neural architecture
method [24] (Appendix A.3).

– Robustness of OPL against noise in the input images
(Appendix A.4).

– Visualization of learned representations and classifica-
tion results (Appendix B).

Appendix A. Experimentation
We present results for additional experiments conducted

using OPL on a variety of settings.

Appendix A.1. Additional ImageNet results

We include additional experimentation over a state-of-
the-art baseline for the Imagenet classification task in Ta-
ble 1.

Method Top-1 (%) Top-5 (%)

ResNet50-D [18] 78.31→79.26 94.09→94.62
Table 1: Increase in accuracy on ImageNet val. set with OPL.

Appendix A.2. MNIST results

We conduct experiments on the MNIST dataset integrat-
ing OPL over a CE baseline. We use a 4-layer convolutional
neural network with 32-dimensional feature embedding (af-
ter a global average pool operation) following the experi-
mental setup in [63]. Our results are reported in Table 2.
Additionally, we conduct experiments appending a fully-
connected layer to reduce the feature dimensionality to 2
for generating better visualizations on behaviour of OPL in
feature-space (presented in Fig. 1 in main article).

Method 1st 2nd 3rd Avg

CE (baseline) 99.28% 99.27% 99.25% 99.27%
CE+OPL (ours) 99.58% 99.56% 99.61% 99.58%

Table 2: Results on MNIST: OPL obtains improvements over the
CE baseline on MNIST dataset. Each experiment is replicated
thrice and the average across runs is additionally reported.

Appendix A.3. Scalable Architectures

We run experiments using smallar, scalable deep neural
network architectures where we plug-in OPL on top of their
methodology. These experiments are based on the approach
followed in [24]. Refer Table 3.

Method Backbone Baseline[24] [24] + OPL

NeuralScale [24] ResNet18 77.59% 77.81%
NeuralScale [24] VGG11 67.42% 67.69%

Table 3: Additional results on CIFAR-100: Performance im-
provements integrating OPL into small-scalable backbones for
classification. Reported values are top-1 classification accuracies.

Appendix A.4. Robustness to Noise: FSL

We have already established through empirical evidence
how OPL improves performance for few-shot learning tasks
as well as robustness to adversarial examples present dur-
ing evaluation. We now explore the more challenging task
of exploring robustness to input sample noise in a FSL set-
ting (similar to one in Appendix B). The base training is
conducted with no noise present in training data. During
evaluation, the support and query set images are corrupted
with random Gaussian noise of varying standard deviation
(referred to as σ). This can be considered a domain shift
on top of unseen novel classes during evaluation. The fea-
tures learned with OPL during base training exhibit better
robustness to such input corruptions in this FSL setting. We
report these results in Table 4. The experiments conducted
followed the method in [49] integrated with OPL.

Quantitative results highlighting these performance im-
provements are presented in Table 4.

Appendix A.5. Additional Ablation

We conduct further ablations on few-shot learning and
label noise tasks in Table 5 and Table 6. We also evaluate
the sub-components of OPL as well as an alternate variant
of covariance from [61] in Table 7.

Appendix B. Visualization
In this section, we present additional visualizations ex-

ploring various aspects of OPL and its performance.

Appendix B.1. Class Embeddings

Consider a few-shot learning setting, where a model
trained in a fully-supervised manner (referred to as base
model / base training) on a set of selected classes which



Method Noise Cifar:1shot Cifar:5shot Mini:1shot Mini:5shot Tier:1shot Tier:5shot

RFS [49] (σ = 0.1) 63.30±0.39 80.36±0.28 55.98±0.37 74.46±0.27 66.54±0.43 82.92±0.29
RFS[49] + OPL (σ = 0.1) 65.42±0.40 81.41±0.30 56.21±0.36 73.20±0.29 66.60±0.41 83.21±0.29
RFS [49] (σ = 0.05) 68.32±0.38 84.34±0.27 60.22±0.36 77.45±0.27 68.65±0.41 83.12±0.27
RFS[49] + OPL (σ = 0.05) 71.05±0.41 84.46±0.28 61.70±0.37 77.59±0.27 69.60±0.40 84.50±0.29

Table 4: Additional FSL Experiments: We explore the robustness of models to noise (random Gaussian noise of varying standard
deviation is added to input images) in FSL setting. Models trained with our proposed OPL loss are significantly more robust compared to
the cross-entropy only baseline in [49].

Param λ = 0.05 λ = 0.1 λ = 0.5 λ = 1.0 λ = 2.0

γ=2.0 64.41 64.52 62.03 58.55 54.82
γ=1.0 64.36 64.73 65.11 61.33 58.68
γ=0.5 63.47 63.76 64.83 63.02 59.85

Table 5: FSL results (1-shot) on held-out val. set of CIFAR-FS.

Param λ = 0.05 λ = 0.1 λ = 0.5 λ = 1.0 λ = 2.0

γ=2.0 55.11 54.19 *6.07 *3.66 *3.59
γ=1.0 54.77 52.75 56.70 56.96 60.02
γ=0.5 53.78 52.45 50.48 49.49 33.99

Table 6: Label noise results: Accuracy on CIFAR-100 val. set.

Model CE only CE + s CE + d CE + OPL CE + cov [61]

Top-1 72.40 71.06 70.34 73.52 72.99
Top-5 92.68 91.65 91.42 93.07 92.84

Table 7: The sub-components of OPL (s & d) individually do not
create the desired effect of simultaneous clustering and separation.
OPL also outperforms minimizing mini-batch covariance matrix.

contain training labels (referred to as base classes) is later
evaluated on a set of unseen classes (referred to as novel
classes). The sets of base and novel classes are disjoint.
The evaluation protocol would involve episodic iterations,
where in each step a small set of labelled samples from
the novel classes (referred to as support set) is available
for during inference fine-tuning, and another set of those
same novel classes (referred to as query set) is available for
calculating the accuracy metrics. While there is room for
fine-tuning of the base model during inference, we note that
the feature space of that model is mostly defined during the
base training.

Given how our proposed loss is already able to explicitly
enforce constraints on the feature space during base train-
ing, we want to examine if the additional discriminative na-
ture endowed on the features by OPL is aware of higher
level semantics. To evaluate this, we explore the more chal-
lenging task of inter-class separation and intra-class clsu-
tering of novel classes which are unseen during the base
training. We train a model following the approach in [49]
integrating OPL, and visualize the separation of different
class features for both base and novel classes in Fig. 1.

Figure 1: LDA visualization for CE vs OPL in FSL setting:
Training with OPL increases separation of features in both base
and novel classes when applied in a few-shot learning setting.
LDA has been used following the insights in [14].

Appendix B.2. Imagenet Examples

We further explore the performance of our model
(CE+OPL) trained on ImageNet by examining the failure
cases of the baseline model that were improved upon when
adding OPL. These results are illustrated in Fig. 3.

Appendix B.3. Block Matrix

We defined the overall objective of OPL as a minimiza-
tion of the expected inter-class orthogonality (refer Eq. 8)
and conducted empirical analysis using models training us-
ing our proposed loss function against a CE only baseline
(illustrated in Fig. 4 of main paper). In this section, we con-
duct additional analysis on those block-matrices to further
understand the outcomes of our orthogonality constraints on
the learned feature space. It is interesting to note that while
OPL enforces a higher degree of orthogonality between the
average class vectors, it does not naively push everything to



Figure 2: Orthogonality Visualization: The diagram (enlarged version of Fig 4b in main paper) visualizes the cosine similarity between
each pair of per-class feature vectors extracted from an OPL trained ResNet-56 for the CIFAR-100 test-set. Each per-class feature vector
is calculated averaging over the features of all samples belonging to that class within the test-set. We analyse the relatioships for two
randomly selected classes, dolphin and pear. Consider the similarity of the dolphin class column (label highlighted in blue). In general,
it has low similarity with the other classes, except in 3 instances. Two of those, shark and otter (pink arrows) align with our heuristics on
similarity of those categories. The similarity to oak tree category can be attributed to some correlation present within the test-set images of
these two classes (e.g. both contain large blue portions - ocean for dolphin and sky for oak tree). Now, consider pear (label highlighted in
green), which has an average similarity to most other classes except two: tank and shark (labels highlighted in green / tank in CIFAR-100
is the military vehicle). These two classes have relatively lower similarity with the pear class as seen from the diagram (pink lines and
pink arrow) which again aligns with our intuition about the relationships between these categories. Overall, we note that the outcomes of
the constraints we enforce on feature space through OPL can be interpreted meaningfully to a greater extent in comparison to the same
relationships for the CE baseline.

be orthogonal. We note that this allows any hidden knowl-
edge learned during the training process (information not
captured in the labels explicitly) to remain within the fea-
tures. The results of the experiments conducted on this are

illustrated in Fig. 2.



Figure 3: Visualization of Images: we show images where OPL predicts the correct but CE fails.


