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A. More Visual Results
To have an intuitive understanding of our counterfactual

attention learning method, we compare the attention maps of
our models and the baselines models on CUB [3], Stanford
Cars [1] and Aircraft datasets [2]. The more visual results
are presented in Figure 1. We see our method helps the
attention models make correct predictions by 1) reducing
the misleading and scatter attentions and 2) encouraging
the model to focus on the main clues for classification and
explore more discriminative regions.

B. More Implementation Details

Different types of counterfactual attentions. We com-
pared four different counterfactual attentions in our experi-
ments. The details about how to generate them are described
as follows.

• Random Attention. We use randomly generated at-
tention maps as the counterfactual attentions. The atten-
tion value for each location is sampled from a uniform
distribution U(0, 2).

• Uniform Attention. We simply set the attention value
for each location to the average value of the real atten-
tion maps.

• Reversed Attention. We reverse the attention maps
by subtracting the original attention from the maximal
attention value of each sample.

• Shuffle Attention. We randomly shuffle the attention
maps along the batch dimension.

Attention Regularization Strategy. We investigated sev-
eral regularization strategies on the baseline attention model
to verify the effectiveness of our method. The details about
these regularization strategies are described as follows.

• Attention Dropout. We apply the Dropout method to
the attention maps.

• Entropy Regularization. We add an extra term to the
loss function to maximize the entropy of the attention
maps.

• Attention Normalization. We add ℓ2 normalization
to the attention maps.
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Figure 1: Visualization of the attention maps of our models and the baseline models. We see our method helps the attention
models make correct predictions by 1) reducing the misleading and scatter attentions and 2) encouraging the model to focus on
the main clues for classification and explore more discriminative regions. Best viewed in color.
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