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The supplementary material provides additional details
on GPS loss, additional qualitative results for all four re-
gions, ablations and feature visualizations. We also provide
evaluations on the test dataset by Vaca-Castano et al. [2].

1. GPS Loss

In this work, we propose a novel GPS loss to train
our Geo-Temporal Feature Learning (GTFL) network. The
GPS loss is used together with Frame Triplet loss and Clip
Triplet loss, as explained in the main paper. We believe that
geographical regions have landmarks, landscapes and veg-
etation unique to the regions and holds true over a small
geographical region. So, we utilized the GPS loss as an ad-
ditional loss function to enforce geographical consistency
on the learnt features. The appearance features between the
query (Berkeley Driving Dataset [3] ) videos and gallery
(Google StreetView) images are vital during the retrieval
and thus the GPS loss provides additional weak supervision
while learning the features.

In Figure 1, we illustrate the relationship between the
feature distances among the images and physical distances
between their GPS locations for a subset of the training
dataset. Each point in the scatter-plot represents the feature
distance between a pair of images along x-axis and their
physical distances along y-axis. We observe that a linear re-
lationship can be established between the feature distances
and the geographical distances and thus, the linearity can be
imposed during the training of our network.

We report the impact of the GPS loss in Table 3 in the
main paper. We observed that, the inclusion of the GPS loss
during the training helps learn discriminative features and
contributes to minimizing the localization error.

2. Additional Qualitative Results

In this section, we provide additional qualitative results
for all four regions of evaluations, San Francisco, Berkeley,
Bay Area and New York. Figure 2 visualizes three sam-
ple images from Bay Area (first row) and San Francisco
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Figure 1: Scatterplot showing the relationship between feature
distances (dfcats) and geographical distances (dgps) for a subset
of the dataset. Each point in the plot represents the feature distance
between two images along x-axis and their geographical distance
along y-axis. The blue line is the line of best fit through the scat-
terplot and shows a linear relationship can be established between
the points; with a slope of 1.077 and intercept of -0.2313. We
model the GPS loss to preserve the linear relationship between the
feature distances and gps distances.

(second row). Similarly, Figure 3 shows sample images
from New York (first row) and Berkeley (second row). The
green curves represent the ground truth trajectories and the
red curves show the corresponding predicted trajectories in
each image. We can observe that the predicted trajectories
have a very high overlap with the ground truth trajectories,
justifying that the network is able to localize the trajectories
successfully.

3. Additional Ablation Study

Here, we provide additional ablations conducted for our
experiments.
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Figure 2: Qualitative Results. Example Images showing the ground truth (green curves) and predicted (red curves) trajectories for Bay

Area (first row) and San Francisco (second row).

Table 1: Ablation study on varying feature dimension size. We
report the evaluations in terms of localization error in meters.

Feature dim.‘ SF Bay Area Berkeley NY

d=1024 ‘472.46 642.17  507.03 603.72
d=512 ‘ 300.47 524.28 424.79 493.43
d=256 ‘ 363.24 888.99  579.49 518.47

3.1. Ablation on Feature Dimensions

Feature dimensions are critical components in deep
learning networks. The feature dimension represents the

size of a feature vector representing each input image.
Larger feature dimension means larger memory require-
ments to store them as well as more computations. Smaller
dimension provides more compact representations but they
may be insufficient for mapping the images to feature space.

We conducted experiments by varying the feature dimen-
sions as 256, 512 and 1024 and report the results in Table 1.
As observed, 512 dimensional feature representation works
the best for our experiments.

3.2. Ablation with and without NetVLAD layer

NetVLAD [1] is a popular trainable pooling layer used
to capture the information about the statistics of local de-
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Figure 3: Qualitative Results. Example Images showing the ground truth (green curves) and predicted (red curves) trajectories for New

York (first row) and Berkeley (second row).

scriptors aggregated over the image. NetVLAD learns the
cluster centers and residuals. NetVLAD has be widely used
in image retrieval problems and thus we use it in our frame-
work as well. Here, for this ablation, we conduct exper-
iments with and without NetVLAD layer and present the
results in Table 2 . We can observe that the network with
NetVLAD layer performs slightly better than the network
without NetVLAD layer. This affirms that NetVLAD helps
in retrieval problems; but the large improvement in results
for our proposed method over 2D CNN (as reported in Table
2 in the main paper) is contributed by temporally learning
of features and not necessarily due to the use of NetVLAD
in our network.

4. Evaluation on Additional Dataset

We have conducted the evaluation on test sequences
from the prior work by Vaca-Castano er al. [2]. Due to

Table 2: Ablation study on experiments with and without
NetVLAD layer in the proposed network. We report the evalu-
ations in terms of geo-localization error in meters.

Methods | SF Bay Area Berkeley NY

736.41 715.98
42479 493.43

without NetVLADI|531.53  655.49
300.47 524.28

with NetVLAD

mismatch in the number of frames and the GPS annotations
for the clips, we interpolated the sparse GPS annotations to
obtain one-to-one correspondences with the test frames.

The average localization error for our proposed approach
is 131.54 meters. After smoothing, the localization error
reduces to 54.14 meters. The average localization error re-
ported in the original paper for frame by frame evaluation
is 268.6 meters. This justifies the contribution of our pro-



posed method in learning coherent features for the video
frames compared to frame based evaluation method. Their
error after trajectory reconstruction is 9.94 meters. The rea-
son for such low error is that they discard the outliers and
only retain the correct predictions and compute the errors
on the retained GPS locations. If we also discard the out-
liers as predicted by our prediction head and only keep the
inliers and evaluate on them, the error is 11.79 meters. We
believe these numbers are comparable.
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