
Common Objects in 3D:
Large-Scale Learning and Evaluation of Real-life 3D Category Reconstruction

Supplementary material

Sampled features !!!
"" × "#!$ × $%

Source
view %&#!$

Sourceview %'#!$

Source
view %(#

!$

Source view
features Ψ&#!$

Li
ne

ar
 la

ye
r

D
)
×

80

Multi-head att.
along dim d

2-layer MLP
Linear !!" × !!"→ ReLU
→ Linear !!" × !#$%

Learned dense
ResNet feature

Image color

Segmentation mask

Sampled source feature

Pos. encoding ((*)
!!

Fe
at

ur
es

 !
*+
,

"
"
×
"
#!
$
×
80

Po
ol

in
g

tra
ns

f.
en

c.
 .
/
&

R
ay

 tr
an

sf
. e

nc
. .
/
,

Fe
at

ur
es

 !
*+
&

"
"
×
"
#!
$
×
40

Po
ol

in
g

tra
ns

f.
en

c.
 .
/
&

R
ay

 tr
an

sf
. e

nc
. .
/
,

Fe
at

ur
es

 !
*+
-+

'
"
"
×
"
#!
$
×
20

Li
ne

ar
 la

ye
r

20
×

1

So
ftm

ax
W

ei
gh

te
d

su
m

al

on
g

di
m

 1
W

ei
gh

ts
 2

"
"
×
"
#!
$
×
1

Pe
r-

po
in

t f
ea

tu
re

s
"
"
×
20

4 .
/0

1
Li

n.
 +

 R
el

u
+

Li
n.

20
+
(
6 2

×
3

8 .
/0

1
Li

n.
 +

 R
eL

U
20

×
1

C
ol

or
 4

N
"
×
3

O
pa

ci
ty

 8 3
"
#
×
1

"#×"#!$×445
Skip + LayerNorm

Skip + LayerNorm
"#×"#!$×4326

Transform
er Enc. !"

!"#
$!

w
ith attention along dim

 d

Projection	ray		r7
1 × 3

EA
 ra

ym
ar

ch
in

g

R
en

de
re

d
co

lo
r
F % 268

6

3D
 T

ra
ns

fo
rm

er

En
co

de
r .
/
*

Layers

Tensors

Figure I: A detailed illustration of the architecture of NerFormer .

In what follows, we provide additional quantitative re-
sults (sec. A), technical details of NerFormer and the base-
lines (sec. B), and details of the Human-in-the-loop 3D an-
notation process (sec. C).

A. Additional results
A.1. Results on all 50 categories

While tab. 3 in the main paper provides results on a
subset of 10 object categories for all baselines, for com-
pleteness, in tab. I, we provide evaluation on all 50 object
classes for 4 best-performing baselines according to results
reported in tab. 3: NerFormer, SRN+WCE, SRN+�+WCE,
and NeRF+WCE.

Similar to tab. 3, on the test-unseen set, NerFormer
is the best in all color-based metrics, suggesting that SRN
and NeRF+WCE are prone to overfitting to the training
scenes. While SRN outperforms NerFormer in some cases
on train-unseen, we note that the autodecoders would
likely yield superior performance on train-unseen due
to their ability to capture the information from all views of
a training scene in the latent scene-specific encoding.

A.2. Convergence speed
Fig. II further analyzes training convergence on the

single-scene new-view synthesis task. For each method and

epoch, we plot the average and standard deviation over of
the per-epoch mean PSNRs of each of the 40 test scenes.
The fastest converging methods are SRN, IDR, NerFormer
, NeRF which also top the performance in tab. 2, indicat-
ing a significant correlation between convergence rate and
performance. Furthermore, there is a large discrepancy be-
tween the train and test PSNR of �/WCE-endowed SRN.
This shows that, for the single-scene setting, increasing the
model expressivity with WCE or � can lead to overfitting to
the training views.

A.3. Execution speed
Tab. II contains an evaluation of execution times for all

methods from tab. 2. Here, each row reports an average time
to render an 800x800 pixel image on NVIDIA Tesla V100
GPU.

A.4. Test-time autodecoder optimization
In tab. III, we provide an extension of tab. 3 containing

the evaluation of the best-performing autodecoding meth-
ods at test-time. First, each method is first trained on
train-known. Then, during evaluation, the latter freezes
the trained weights and optimizes the input latent code for
a given set of source frames from a test sequence. The la-
tent codes are optimized with Adam until convergence, de-
caying the learning rate 10-fold whenever the optimization

(a) Average statistics (b) PSNR @ # source views (c) PSNR @ target view difficulty

train-unseen test-unseen train-unseen test-unseen train-unseen test-unseen
Method PSNR LPIPS `

depth
1 IoU PSNR LPIPS `

depth
1 IoU 9 7 5 3 1 9 7 5 3 1 easy med. hard easy med. hard

NerFormer 16.5 0.24 3.67 0.76 15.7 0.24 1.82 0.75 17.5 17.3 16.9 16.3 14.8 16.7 16.4 16.1 15.5 13.9 17.3 14.7 12.8 16.5 13.7 11.2
SRN+WCE 16.3 0.25 0.37 0.81 14.2 0.27 0.47 0.77 16.6 16.6 16.5 16.2 15.6 14.4 14.3 14.3 14.2 13.5 16.6 15.5 12.9 14.4 13.4 11.4
SRN+WCE+� 17.1 0.25 0.35 0.81 13.7 0.28 0.47 0.73 17.4 17.4 17.3 17.0 16.3 14.0 13.8 13.9 13.7 13.2 17.4 16.3 14.4 14.0 13.1 10.6
NeRF+WCE[26] 12.6 0.27 6.21 0.54 11.6 0.27 4.54 0.51 13.0 13.0 12.8 12.6 11.6 11.9 11.8 11.8 11.6 10.8 12.9 12.1 9.4 11.9 11.1 8.7

Table I: Results on all 50 classes from CO3D comparing the 4 best-performing methods from tab. 3.

method time [sec] method time [sec]

NerFormer 178.41 SRN[56] 1.00
NeRF+WCE[26] 113.82 SRN+� 1.19
NeRF[43] 23.82 SRN+WCE+� 4.20
NV[41] 0.37 SRN+WCE 5.34
NV+WCE 0.41 DVR[45] 196.94
IDR[74] 69.11 DVR+� 204.39
IPC 0.15 P3DMesh[50] 0.09
IPC+WCE 0.16

Table II: Average rendering time of an 800x800 pixel im-
age comparing all methods from tab. 2.

Figure II: Convergence speed on single-scene new-view-
synthesis showing the mean and std. dev. over the per-
scene training PSNRs for each method.

objective plateaus.
We observed that the latent code optimization was

mostly failing for NeRF and NV. On the other hand, SRN
gave slightly better performance, which we attribute to the
higher smoothness of the implicit function compared to the
NeRF and NV (SRN contains normalization layers while the
other baselines are bare MLPs interleaving linear layers and
ReLUs).

A.5. Estimating new-view difficulty
Tab. 3 contains metrics evaluated separately for three

viewpoint difficulty bins. Here, we detail the process of
estimating the difficulty of a testing target view.
Camera difficulty D Given a target camera P tgt and a set
of available source views {P src

i
}Nsrc
i=1, the difficulty of the tar-

get view D(P tgt) 2 [0, 1] is quantified as the average of the
two lowest distances d(P tgt

, P
src
i

) between the target view
and each of the source views.

Camera distance dcam The distance dcam(Pi, Pj) 2 [0, 1]
between two cameras Pi and Pj is defined as follows. We
first generate a cubical voxel grid of size 323 in the center
of the scene with the voxel size set such that the majority
of the grid is observed by all cameras in the scene. Each
point xk, denoting the coordinates of the center of a cell
in the voxel grid, is then projected to both cameras leading
to a pair of projection rays ri

k
, rj

k
2 S2. We then define

the similarity s(ri
k
, rj

k
) = �[⇡Pi(xk) 2 ⌦i ^ ⇡Pj (xk) 2

⌦j](1 + ri
k
· rj

k
) as a dot product between the pair of rays

weighted by an indicator that checks whether the projection
of xk simultaneously lands in the rasters ⌦i,⌦j 2 [0,W]⇥
[0, H] of both cameras Pi and Pj . The camera distance dcam

is then defined as one minus the intersection-over-union of
the similarities between all pairs of rays generated by each
voxel grid point xk:

d
cam(Pi, Pj) = 1�

P
k
s(ri

k
, rj

k
)

P
k
s(ri

k
, ri

k
) + s(rj

k
, rj

k
)� s(ri

k
, rj

k
)
.

Intuitively, the camera distance is proportional to the angle
between the camera heading vectors adjusted by the overlap
between the voxels observed by both cameras. However,
merely considering the heading vectors would not take into
account the intrinsics of the cameras (focal length / prin-
cipal point). We thus devised d

cam which leverages angles
between projection rays, which are a function of both the
intrinsics and extrinsics.

In order to understand d
cam, consider the following two

examples: Two cameras observing the same set of voxels at
a relative angle of 0.5⇡ would have dcam(Pi, Pj) ⇡ 2

3 , while
opposite-facing cameras would yield a maximum possible
d

cam(Pi, Pj) ⇡ 1.

Camera difficulty bins Each testing target camera P tgt is
then assigned into one of 3 difficulty bins (easy, medium,
hard) depending on its difficulty measure D(P tgt). More
specifically, the easy cameras satisfy 0 D(P tgt) <

1
6 ,

medium 1
6 D(P tgt) < 1

3 , and hard D(P tgt) � 1
3 .

(a) Average statistics (b) PSNR @ # src. views (c) PSNR @ tgt. difficulty

test-unseen test-unseen test-unseen
Method PSNR LPIPS `depth

1 IoU 9 7 5 3 1 easy medium hard

NerFormer 17.6 0.27 0.91 0.81 18.9 18.6 18.1 17.1 15.1 18.6 14.9 14.7
SRN+�+AD 13.2 0.29 0.48 0.71 13.6 13.5 13.3 13.1 12.4 13.5 11.6 11.8
SRN[56]+AD 13.8 0.28 0.45 0.74 14.3 14.3 14.0 13.6 12.6 14.2 12.5 11.1
NV[41]+AD 11.4 0.53 1.29 0.47 11.5 11.2 11.3 11.5 11.5 11.4 11.3 8.0
NeRF+AD 10.6 0.32 4.42 0.49 10.7 10.5 10.4 10.7 10.4 10.7 10.3 3.6

Table III: Autodecoder latent optimization on test-unseen extending the results in tab. 3. Each method labelled with
+AD is first trained on train-known. During evaluation the latter fixes the trained weights and optimizes the input latent
code for a given set of source frames from a test sequence. For context, we also compare to NerFormer , which is not an
autodecoder.

B. Additional technical details
In this section we provide additional details of Ner-

Former and of the benchmarked baseline approaches which
were outlined in sec. 5.

B.1. NerFormer

Source image features The dense pixel-wise descrip-
tor CNN(Isrc) (sec. 4.2) of a source image Isrc is a stacking
of 3 types of feature tensors along the channel dimension
after differentiably upsampling to a common spatial resolu-
tion H ⇥ W . The feature types are: 1) Intermediate acti-
vations extracted from the source image I

src after “layer1”,
“layer2”, and “layer3” layers of the ResNet34 [23] network,
2) the source segmentation mask M

src, 3) the raw source
image I

src. Note that we separately map the output of each
of the ResNet34 layers to a 32-dimensional feature with a
1x1 convolution followed by `2 normalization of the feature
column at every spatial location.
NerFormer architecture In fig. I we provide a more de-
tailed visualisation of the NerFormer architecture.
Rendering details Similar to NeRF [43], NerFormer op-
timizes loss functions for 800 randomly sampled image rays
ru in each training target image. Following [43], Ner-
Former implements a coarse and fine rendering network
fTR. The former, given a ray ru, samples 32 points xi 2 ru
at uniform depth intervals between predefined lower and up-
per depth bounds. The fine rendering network then samples
16 points on ru with importance sampling from the distri-
bution proportional to the coarse rendering weights wi.
Training details For a randomly sampled pixel u we
thus render the color Î tgt

u and an alpha value M̂
tgt
u = 1 �Q

i
(1�exp(��fo(x, z))) 2 [0, 1], where the latter denotes

the total amount of light absorbed by the implicit surface
(M̂ tgt

u = 1 for complete absorption).
As noted in sec. 4.3, the optimized loss is a sum of the

RGB squared error
P

u kÎ tgt
u � I

tgt
u k2 and the segmenta-

tion binary cross entropy (BCE)
P

u M
tgt
u log M̂ tgt

u + (1 �
M

tgt
u) log(1� M̂

tgt
u). The latter ensures that rays that do not

intersect the object of interest do not terminate in the scene
and vice versa. Following [43], we evaluate the losses for
the fine and coarse renders and optimize their sum.

B.2. NeRF

We use the implementation of NeRF [43] from Py-
Torch3D [50] which closely follows the original paper.
Similar to NerFormer , we also add to the original losses of
NeRF the BCE loss between the rendered alpha mask and
the ground truth target mask. The coloring function cMLP
and the opacity function fMLP have their architecture iden-
tical to the original implementation.

B.3. SDF methods - DVR, IDR

Here we detail the two baseline methods that represent
shapes with signed distance fields (SDF). We start with in-
troducing the SDF and a method for their rendering.

Signed distance fields While opacity functions fo repre-
sent shapes with a measure of opaqueness of 3D spatial el-
ements, signed distance fields fd(x, z) 2 R, express the
signed euclidean distance to the nearest point x0 2 Sf on
the implicit surface Sf .

Sphere tracing (ST) While EA is the most popular
method for rendering opacity fields fo, ST is its analogue
for signed distance fields fd. Specifically, ST renders a
pixel u by seeking the minimum of the signed distance
function fd on the domain of 3D points belonging to the
ray ru. ST, during its t-th iteration, refines the current
estimate xru

t
of the ray-surface intersection by moving

�t = fd(x
ru
t
, z) units in the direction of the projection ray:

xru
t+1 = xt +�tru. Upon convergence at time T , the ren-

dered color Î tgt
u = c(xru

T
, ru, z) comprises the response of

the coloring function at the estimated ray-surface intersec-
tion.

DVR natively supports our supervisory scenario and hence
no alternations were required for the training protocol of
both DVR+AD and DVR. In order to implement DVR+�, we

simply convert the input coordinates to positional embed-
dings and adjust the number of input channels of the first
layer of DVR’s implicit function accordingly. The released
code [45] supports DVR+AD so no changes were required
here. As mentioned in the paper, unfortunately, all our at-
tempts to merge DVR with WCE lead to a non-converging
model.
IDR Similar to DVR, IDR [74] supports our supervisory
setup by default. In order to implement IDR+AD, we append
the latent code z to the positional embeddings that are input
to the implicit function, and we adjust the number of input
channels of the first layer of the implicit function accord-
ingly. IDR already takes as input the positional embeddings
�, so the extension IDR+� does not apply here. As men-
tioned in the main paper, we could not obtain a converging
version of IDR+WCE.

B.4. SRN

Here, we first give a brief overview of the learned SRN
raymarcher, followed by describing the WCE extension of
SRN.
Neural raymarching Contrasted to the explicit formula-
tions of sphere-tracing or EA, recently, SRN [56] proposed
to learn to march along the projection rays with a recur-
rent deep network. Similar to sphere-tracing, SRN decides
at iteration t on the length of the raymarching step �t by
evaluating a function at the current intersection estimate
xru
t

. However, instead of querying the SDF, SRN utilizes an
LSTM [27] cell fLSTM(xru

t
, ru, z,ht) = (�t,ht+1) which

is additionally conditioned on the ray direction ru and a
temporal hidden state ht. In this manner, the raymarcher
adapts the step-size prediction based on the past marching
observations.
SRN+WCE The WCE exension of SRN is straight-
forwardly implemented by replacing the itera-
tive invocation of the global-encoding-conditioned
implicit fLSTM(xru

t
, ru, zglobal,ht) of the SRN’s

raymarcher with the WCE-conditioned implicit
fLSTM(xru

t
, ru, z?WCE(x

ru
t
, {Isrc

i
}, {P src

i
}),ht) This way,

the learned raymarcher can “tap”” into the source views
during every iteration to receive a more direct triangulation
signal. As apparent from tabs. 3 and I, our WCE extension
of SRN provides a very strong baseline that in fact achieves
the best depth prediction performance.
Mask prediction The learned raymarcher of the original
version of SRN does not render an alpha mask of the fore-
ground object. In order to enable the latter, we extend the
last layer of the SRN’s coloring function c with an addi-
tional channel that is terminated with a sigmoid activation
and represents the alpha value of the corresponding pixel
u. This channel is then supervised by minimizing the DICE
coefficient between its output and the ground truth segmen-
tation masks M tgt.

B.5. P3DMesh

As mentioned in the paper, P3DMesh [50] deforms an
initial spherical mesh template with a fixed topology with
a series of convolutions on the mesh graph. As in [67],
the graph convolutions accept features sampled from the
source images at the 2D projections of the mesh vertices.
Since P3DMesh supports conditioning only on a single-
source-view, we extend to the multi-view setting by aver-
aging over the per-vertex features sampled from each of
the source views. Furthermore, note that the implementa-
tion in [50] differentiably renders the mesh with a memory-
efficient version of the Soft Rasterizer [40]. The training
protocol, including the employed losses and their weight-
ing, closely follows [50].

B.6. Neural Volumes (NV)
Neural Volumes [41] is a method that represents im-

plicit surfaces as voxel grids. In what follows, we first
briefly describe voxel grids, their specific implementation
in NV, and its extension with warp-conditioned embedding
(NV+WCE).
Voxel grids While MLPs can label an arbitrary element
of the 3D domain, a voxel grid can be seen as an implicit
surface restricted to a subset of R3 which is uniformly sub-
divided to a lattice V (z) 2 RR

3

of R
3;R 2 N+ cuboid

elements of the same size. Note that the lattice V (z) is
a function (typically a 3D deconvnet) of z which allows
for representing different 3D shapes. The implicit func-
tion fvoxel(x, z) = ⇣(V (z),x) is then evaluated by sam-
pling V (z) at the corresponding world coordinate x, with
a grid-sampling function ⇣ : RR

3 ⇥ R3 7! Rdim(f), such
as trilinear interpolation. Voxel grids also admit coloring
via a volume C(z) 2 R3⇥R

3

which can be sampled in an
analogous manner.
Neural Volumes A notable voxel-grid-based method is
Neural Volumes [41], which proposed an improved sam-
pling function ⇣warp(⇣(W (z),x) + x, V (z)) which refines
the sampling location x with an offset vector ⇣(W (z),x) 2
R3 sampled from a warping lattice W (z) 2 RR

3

. Here
both W and V are implemented as a 3D deconvolutional
network.
NV and NV+AD NV+AD is in fact the vanilla version
of [41] whose 3D deconvnets V and W accept the
scene-specific latent code zscene(sequenceID) (described in
sec. 5.3). The ”overfitting” version of NV from tab. 2 is a
special case of NV+AD with a single latent code.
NV+WCE The WCE extension of Neural Volumes
(NV+WCE) appends the WCE to the feature of each voxel
after the second 3D deconvolution layer of the 3D con-
vnets V and W . Here, the WCE of a voxel is generated
by expressing the world coordinate xVi of the center of the
correspoding voxel Vi and calculating the aggregate WCE

z?WCE(xVi , {Isrc
i
}, {P src

i
}) for a set of source views {Isrc

i
}

and their cameras {P src
i

}. Note that a similar approach has
been proposed in [31].
Training All versions of NV optimize the losses from
[41] with the original weights. Furthermore, we exploit the
known ground truth segmentation masks and minimize the
binary cross entropy between the alpha mask returned by
the raymarcher of NV and the ground truth mask M

tgt.

B.7. Implicit Point Cloud (IPC)
As mentioned in sec. 5, IPC represents shapes by con-

verting a point cloud to an implicit function which is later
rendered with EA raymarching.

Formally, let a point cloud P(z) = {xi}
Npts
i=1 be an Npts-

sized unordered set of points, where P is a point cloud pre-
dictor (detailed later in this section) which accepts the la-
tent code z. P(z) then admits an occupancy function fP✏

defined as follows:

fP✏(x
0
, z) = �[kNNP(z)(x

0)� x0k < ✏],

where NNP(z)(x
0) = argminx2P(z) kx � x0k returns the

nearest point from the point cloud P(z) to the query point
x0. Intuitively, fP✏ yields zero everywhere except within an
✏ neighborhood of each point cloud point xi 2 P(z), where
fP yields 1. As we describe later, anchoring the implicit
function on the set of cloud points allows for faster and
more memory-efficient EA raymarching than in the case of
the neural implicit occupancy fMLP (described in sec. 4.1).

In order to color the implicit point cloud, we define its
coloring function cIPC:

cIPC(x
0
, r, z) = cMLP(NNP(z)(x

0), r, z).

Here cIPC attaches to an arbitrary point x0 the response of
the coloring MLP cMLP at x0’s nearest point cloud neighbor
NNP(z)(x

0).
Rendering IPC IPC is rendered efficiently with the Py-
Torch3D point cloud renderer [50, 69]. More specifically,
given a target camera P

tgt, each point from the predicted
point cloud P(z) is projected to the camera plane to form
a set of 2D projections {⇡P tgt(xi)|xi 2 P(z)}. For each
pixel coordinate u 2 {1, ...,W}⇥ {1, ..., H} in the render-
ing lattice of the target render Î tgt 2 R3⇥H⇥W , the renderer
records the ordered set

⇧u
✏
(P(z)) =

�
xi|xi 2 P(z); k⇡P tgt(xi)� uk ✏fP tgt ;

dP tgt(xi) dP tgt(xi+1)
�
,

of point cloud points xi 2 P(z) whose 2D projections
⇡P tgt(xi) land within the ✏fP tgt distance from the pixel u,
and which is ordered by the depth dP tgt(xi) of each point in
the target camera P

tgt. fP tgt 2 R is the focal length of the
target camera P

tgt.

Intuitively, ⇧u
✏
(P(z)) denotes the set of point cloud

points whose ✏ neighborhoods are intersected by the ren-
dering ray ru emitted from pixel u. Note that this is an
approximation: comparing the 2D camera-plane distance
k⇡P tgt(xi) � uk to the constant ✏fP tgt corresponds to or-
thographic projections of the point neighborhoods, whereas
our cameras are perspective. However, the orthographic ap-
proximation is mild in our case, since the distance of the
point cloud points from the camera is relatively large com-
pared to its focal length.

The EA raymarching then takes the set of u’s 3D points
⇧u

✏
(P(z)) in order to render the color Î tgt

u 2 R3:

Î
tgt
u (ru, z) =

X

xi2⇧u
✏ (P(z))

wi(xi, z,u)cIPC(xi, ru, z).

For IPC, the weight wi(xi, z,u) =⇣Q
i�1
j=0 T

IPC
j

(xi, z,u)
⌘ �

1� T
IPC
i

(xi, z,u)
�

is the product
of emission and absorption functions with the transmission
term T

IPC
i

defined as

T
IPC
i

(xi, z,u) = fP✏(xi, z)| {z }
=1

ku� ⇡P tgt(xi)k
✏fP tgt

,

which approximately measures the amount of light trans-
mitted through the spherical ✏ neigborhood of a point xi

which intersects the projection ray ru. To demonstrate this,
observe that for a pixel uintersect = ⇡P tgt(xi) which coin-
cides with the projection of the 3D point xi, the transmis-
sion T

IPC
i

(xi, z,uintersect) = 0, i.e. no light is transmitted
through xi and the corresponding color cIPC(xi, ruintersect , z)
is fully rendered. On the contrary, for a pixel uoutside =
⇡P tgt(xi + ✏) outside the epsilon neighborhood, the unit
transmission T

IPC
i

(xi, z,uoutside) = 1 signifies that all light
passes through and the point’s color is ignored during ren-
dering. Note that the above equation is very similar to the
top-k point cloud rasterizer of SinSyn [69].
Point cloud predictor P(z) The point cloud predictor
P(z) is the same for both IPC+AD and IPC+WCE. More
specifically, P(z) = {x̄i + oMLP(x̄i, z)}

Npts
i=1 offsets a fixed

set of template points P̄ = {x̄i}
Npts
i=1 with an offset function

o : R3⇥RDz 7! R3 implemented as an MLP with the same
architecture as fMLP. Therefore, o alters the template point
cloud to match a specific shape given its latent shape code
z.
IPC+AD and IPC+WCE For IPC+AD, the offset function
o accepts the video-specific latent code zscene(sequenceID)
described in sec. 5.3, while for IPC+WCE, o takes
as input the aggregate warp-conditioned embedding
z?WCE(x̄i, {Isrc

i
}, {P src

i
}) evaluated at each template point

x̄i 2 P̄ . Finally, the single-scene version, abbreviated
simply as IPC in tab. 2, is a special case of IPC+AD with
zscene(sequenceID) := 0 set to a constant zero vector.

Training All versions of IPC optimize the MSE between
the rendered image Î tgt and the ground truth colors I tgt. Fur-
thermore, we make use of the ground truth segmentation
masks and minimize the Chamfer distance between the set
of 2D projections of the predicted point cloud points P(z),
and the 2D points of the ground truth segmentation mask
[36]. Note that a standard segmentation loss, such as DICE
[57] or Binary Cross Entropy between the rendered alpha
mask and the ground truth segmentation mask, do not apply
here. This is because the gradients generated by the alpha
mask renders of IPC are not well-defined and do not lead to
convergence.

C. 3D annotations with Human-in-the-loop
In sec. 3, we outlined the process of annotating the AMT-

collected videos with 3D ground truth. Here, we further de-
tail the semi-automated process of labelling the quality of
camera tracking and the 3D dense point cloud of the cap-
tured videos (Paragraph 4 in sec. 3).

We initialize the process by annotating an initial set of
several hundreds of reconstructions with a binary label ”ac-
curate / inaccurate” by visually inspecting both the camera
tracks (Pi|Pi 2 R

4⇥4)NI
i=1 and the scene point cloud P(V).

From each video, we then extract various metrics that are
indicative of the reconstruction quality such as a per-pixel
RGB and depth error of the rendered point cloud, the num-
ber of registered cameras, final bundle adjustment energy
etc. The full set of metrics is outlined in tab. IV. We then
train a binary Support Vector Machine (SVM [12]) with an
RBF kernel that regresses the binary label given the recon-
struction metrics as input.

Afterwards, the trained SVM classifies all previously un-
labelled videos. In line with the uncertainty principle [59],
we manually annotate a subset of previously unlabelled
samples that are the closest to the SVM decision bound-
ary. We further correct significant classification errors by
inspecting the highest/lowest scoring samples. In this man-
ner, we alternate between SVM training and manual an-
notation until 1.5k labels are collected (8 % of the whole
dataset).

In order to validate the SVM’s performance, we conduct
a 5-fold cross-validation on the set of annotated videos. The
cross-validation indicates that the SVM has 90% and 78%
accuracy for classifying the camera tracking and point cloud
quality respectively.

References
[1] Adel Ahmadyan, Liangkai Zhang, Jianing Wei, Artsiom

Ablavatski, and Matthias Grundmann. Objectron: A large
scale dataset of object-centric videos in the wild with pose
annotations. arXiv preprint arXiv:2012.09988, 2020. 2

[2] Matan Atzmon and Yaron Lipman. Sal: Sign agnos-
tic learning of shapes from raw data. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2565–2574, 2020. 2, 4

[3] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton.
Layer normalization. arXiv, 2016. 6

[4] Piotr Bojanowski, Armand Joulin, David Lopez-Paz, and
Arthur Szlam. Optimizing the latent space of generative net-
works. arXiv, 2017. 8

[5] Chris Buehler, Michael Bosse, Leonard McMillan, Steven
Gortler, and Michael Cohen. Unstructured lumigraph ren-
dering. In Proceedings of the 28th annual conference on
Computer graphics and interactive techniques, pages 425–
432, 2001. 2

[6] Angel X Chang, Thomas Funkhouser, Leonidas Guibas,
Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese,
Manolis Savva, Shuran Song, Hao Su, et al. Shapenet:
An information-rich 3d model repository. arXiv preprint
arXiv:1512.03012, 2015. 1, 2

[7] Wenzheng Chen, Jun Gao, Huan Ling, Edward J. Smith,
Jaakko Lehtinen, Alec Jacobson, and Sanja Fidler. Learning
to Predict 3D Objects with an Interpolation-based Differen-
tiable Renderer. In Proc. NeurIPS, 2019. 2

[8] Wenzheng Chen, Huan Ling, Jun Gao, Edward Smith,
Jaakko Lehtinen, Alec Jacobson, and Sanja Fidler. Learn-
ing to predict 3d objects with an interpolation-based differ-
entiable renderer. In Advances in Neural Information Pro-
cessing Systems, pages 9609–9619, 2019. 1, 2

[9] Sungjoon Choi, Qian-Yi Zhou, Stephen Miller, and Vladlen
Koltun. A large dataset of object scans. arXiv preprint
arXiv:1602.02481, 2016. 2

[10] Christopher B Choy, Danfei Xu, JunYoung Gwak, Kevin
Chen, and Silvio Savarese. 3d-r2n2: A unified approach for
single and multi-view 3d object reconstruction. In European
conference on computer vision, pages 628–644. Springer,
2016. 2

[11] David Cohn, Les Atlas, and Richard Ladner. Improv-
ing generalization with active learning. Machine learning,
15(2):201–221, 1994. 3

[12] Corinna Cortes and Vladimir Vapnik. Support-vector net-
works. Machine Learning, 20(3), 1995. 17

[13] Alexey Dosovitskiy and Thomas Brox. Generating images
with perceptual similarity metrics based on deep networks.
In Proc. NeurIPS, 2016. 1

[14] Haoqiang Fan, Hao Su, and Leonidas J Guibas. A point set
generation network for 3d object reconstruction from a single
image. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 605–613, 2017. 2

[15] Matheus Gadelha, Subhransu Maji, and Rui Wang. 3d shape
induction from 2d views of multiple objects. In 2017 In-
ternational Conference on 3D Vision (3DV), pages 402–411.
IEEE, 2017. 2

[16] Kyle Genova, Forrester Cole, Avneesh Sud, Aaron Sarna,
and Thomas Funkhouser. Local deep implicit functions for
3d shape. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 4857–
4866, 2020. 2

[17] Kyle Genova, Forrester Cole, Daniel Vlasic, Aaron Sarna,
William T Freeman, and Thomas Funkhouser. Learning

Metric Domain Description

BAfinal cost R The final value of the Bundle Adjustment (BA) cost function.
BAtermination {0, 1} The termination state of BA (converged/not converged).
µdet score [0, 1] An average over per-frame detection scores of the PointRend object detector.
µperc detected [0, 100] Percentage of frames in which the category of interest is detected with PointRend.
Ncameras N The number of cameras registered during BA.
Nsparse pts N Number of points in the sparse point cloud.
PCLrender

`depth R The average `1 depth error between the renders of the fused pointcloud P(V) into each camera Pi of a
video V and the corresponding dense depth map Pi.

PCLrender
`rgb R The average `1 RGB error between the renders of the fused pointcloud P(V) into each camera Pi of a

video V and the corresponding frame Ii.
PCLrender

IoU [0, 1] The average Jaccard Index between the renders of the fused point cloud P(V) into each camera Pi of a
video V and the corresponding PointRend segmentation Mi.

PCLdirection cover N Measures the coverage of the views of the point cloud P(V) with the number of occupied bins in the
azimuth/elevation map of projection rays corresponding to each dense point cloud point xj and a camera
Pi.

Table IV: The list of SfM and point-cloud reconstruction metrics that serve as a set of features for training the active-SVM
that labels camera and reconstruction quality.

shape templates with structured implicit functions. In Pro-
ceedings of the IEEE International Conference on Computer
Vision, pages 7154–7164, 2019. 2

[18] Rohit Girdhar, David F Fouhey, Mikel Rodriguez, and Ab-
hinav Gupta. Learning a predictable and generative vector
representation for objects. In European Conference on Com-
puter Vision, pages 484–499. Springer, 2016. 2, 5

[19] Georgia Gkioxari, Justin Johnson, and Jitendra Malik. Mesh
R-CNN. In Proc. ICCV, 2019. 2

[20] Shubham Goel, Angjoo Kanazawa, and Jitendra Malik.
Shape and viewpoint without keypoints. arXiv preprint
arXiv:2007.10982, 2020. 2

[21] GoogleResearch. Google scanned objects, September. 2
[22] David Ha, Andrew M. Dai, and Quoc V. Le. HyperNetworks.

2016. 4
[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. arXiv preprint
arXiv:1512.03385, 2015. 14

[24] Peter Hedman, Julien Philip, True Price, Jan-Michael Frahm,
George Drettakis, and Gabriel Brostow. Deep blending for
free-viewpoint image-based rendering. ACM Transactions
on Graphics (SIGGRAPH Asia Conference Proceedings),
37(6), November 2018. 2

[25] Philipp Henzler, Niloy Mitra, and Tobias Ritschel. Escaping
plato’s cave using adversarial training: 3d shape from un-
structured 2d image collections. In Proc. ICCV, 2019. 1, 2,
4

[26] Philipp Henzler, Jeremy Reizenstein, Patrick Labatut, Ro-
man Shapovalov, Tobias Ritschel, Andrea Vedaldi, and
David Novotny. Unsupervised learning of 3d object cate-
gories from videos in the wild. arXiv, 2021. 1, 2, 4, 5, 6, 7,
8, 13

[27] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term
memory. Neural Computation, 9(8), 1997. 15

[28] Eldar Insafutdinov and Alexey Dosovitskiy. Unsupervised
learning of shape and pose with differentiable point clouds.

In Advances in neural information processing systems, pages
2802–2812, 2018. 2, 4

[29] Hanbyul Joo, Tomas Simon, Xulong Li, Hao Liu, Lei Tan,
Lin Gui, Sean Banerjee, Timothy Godisart, Bart C. Nabbe,
Iain A. Matthews, Takeo Kanade, Shohei Nobuhara, and
Yaser Sheikh. Panoptic studio: A massively multiview sys-
tem for social interaction capture. PAMI, 41(1), 2019. 2

[30] Angjoo Kanazawa, Shubham Tulsiani, Alexei A. Efros, and
Jitendra Malik. Learning category-specific mesh reconstruc-
tion from image collections. In Proc. ECCV, 2018. 2

[31] Abhishek Kar, Christian Häne, and Jitendra Malik. Learning
a multi-view stereo machine. In Advances in neural infor-
mation processing systems, pages 365–376, 2017. 2, 16

[32] Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. Neu-
ral 3d mesh renderer. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 3907–
3916, 2018. 2

[33] Alexander Kirillov, Yuxin Wu, Kaiming He, and Ross Gir-
shick. Pointrend: Image segmentation as rendering. In Pro-
ceedings of the IEEE/CVF conference on computer vision
and pattern recognition, 2020. 3

[34] Nilesh Kulkarni, Abhinav Gupta, David F. Fouhey, and
Shubham Tulsiani. Articulation-aware canonical surface
mapping. In Proc. CVPR, pages 449–458, 2020. 2

[35] Nilesh Kulkarni, Abhinav Gupta, and Shubham Tulsiani.
Canonical surface mapping via geometric cycle consistency.
In Proc. ICCV, 2019. 2

[36] Xueting Li, Sifei Liu, Kihwan Kim, Shalini De Mello,
Varun Jampani, Ming-Hsuan Yang, and Jan Kautz. Self-
supervised single-view 3d reconstruction via semantic con-
sistency. Proc. ECCV, 2020. 2, 17

[37] Joseph J. Lim, Hamed Pirsiavash, and Antonio Torralba.
Parsing IKEA Objects: Fine Pose Estimation. Proc. ICCV,
2013. 1

[38] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and

C. Lawrence Zitnick. Microsoft COCO: common objects in
context. In Proc. ECCV, 2014. 3

[39] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua,
and Christian Theobalt. Neural sparse voxel fields. arXiv
preprint arXiv:2007.11571, 2020. 2

[40] Shichen Liu, Tianye Li, Weikai Chen, and Hao Li. Soft ras-
terizer: A differentiable renderer for image-based 3D reason-
ing. arXiv.cs, abs/1904.01786, 2019. 2, 4, 5, 15

[41] Stephen Lombardi, Tomas Simon, Jason Saragih, Gabriel
Schwartz, Andreas Lehrmann, and Yaser Sheikh. Neural vol-
umes: Learning dynamic renderable volumes from images.
ACM Trans. Graph., 38(4):65:1–65:14, July 2019. 2, 4, 5, 6,
7, 13, 14, 15, 16

[42] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-
bastian Nowozin, and Andreas Geiger. Occupancy networks:
Learning 3d reconstruction in function space. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 4460–4470, 2019. 2

[43] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. arXiv preprint arXiv:2003.08934, 2020. 2, 4, 6, 13,
14

[44] Thu Nguyen-Phuoc, Chuan Li, Lucas Theis, Christian
Richardt, and Yong-Liang Yang. HoloGAN: Unsupervised
learning of 3D representations from natural images. arXiv.cs,
abs/1904.01326, 2019. 2

[45] Michael Niemeyer, Lars Mescheder, Michael Oechsle, and
Andreas Geiger. Differentiable volumetric rendering: Learn-
ing implicit 3d representations without 3d supervision. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 3504–3515, 2020. 2, 4,
6, 7, 13, 15

[46] Michael Niemeyer, Lars M. Mescheder, Michael Oechsle,
and Andreas Geiger. Occupancy flow: 4d reconstruction by
learning particle dynamics. In Proc. ICCV, 2019. 1, 4

[47] David Novotny, Diane Larlus, and Andrea Vedaldi. Learning
3d object categories by looking around them. In Proc. ICCV,
2017. 2

[48] David Novotný, Diane Larlus, and Andrea Vedaldi. Cap-
turing the geometry of object categories from video supervi-
sion. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2018. 2

[49] Jeong Joon Park, Peter Florence, Julian Straub, Richard
Newcombe, and Steven Lovegrove. Deepsdf: Learning con-
tinuous signed distance functions for shape representation.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 165–174, 2019. 2

[50] Nikhila Ravi, Jeremy Reizenstein, David Novotny, Tay-
lor Gordon, Wan-Yen Lo, Justin Johnson, and Georgia
Gkioxari. Accelerating 3d deep learning with pytorch3d.
arXiv:2007.08501, 2020. 4, 6, 7, 8, 13, 14, 15, 16

[51] Danilo Jimenez Rezende, SM Ali Eslami, Shakir Mohamed,
Peter Battaglia, Max Jaderberg, and Nicolas Heess. Unsu-
pervised learning of 3d structure from images. In Advances
in neural information processing systems, pages 4996–5004,
2016. 2

[52] Shunsuke Saito, , Zeng Huang, Ryota Natsume, Shigeo Mor-
ishima, Angjoo Kanazawa, and Hao Li. Pifu: Pixel-aligned
implicit function for high-resolution clothed human digitiza-
tion. arXiv preprint arXiv:1905.05172, 2019. 2

[53] Johannes Lutz Schönberger and Jan-Michael Frahm.
Structure-from-motion revisited. In Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2016. 3, 4

[54] Johannes Lutz Schönberger, Enliang Zheng, Marc Pollefeys,
and Jan-Michael Frahm. Pixelwise view selection for un-
structured multi-view stereo. In European Conference on
Computer Vision (ECCV), 2016. 3

[55] Katja Schwarz, Yiyi Liao, Michael Niemeyer, and Andreas
Geiger. Graf: Generative radiance fields for 3d-aware image
synthesis. arXiv preprint arXiv:2007.02442, 2020. 2, 4

[56] Vincent Sitzmann, Michael Zollhöfer, and Gordon Wet-
zstein. Scene representation networks: Continuous 3d-
structure-aware neural scene representations. CoRR,
abs/1906.01618, 2019. 1, 2, 4, 5, 6, 7, 8, 13, 14, 15

[57] Carole H Sudre, Wenqi Li, Tom Vercauteren, Sebastien
Ourselin, and M Jorge Cardoso. Generalised dice overlap
as a deep learning loss function for highly unbalanced seg-
mentations. In Deep learning in medical image analysis and
multimodal learning for clinical decision support. 2017. 17

[58] Maxim Tatarchenko, Alexey Dosovitskiy, and Thomas Brox.
Multi-view 3d models from single images with a convolu-
tional network. In Proc. ECCV, 2016. 5

[59] Simon Tong and Edward Y. Chang. Support vector machine
active learning for image retrieval. In ACM Multimedia,
2001. 17

[60] Alex Trevithick and Bo Yang. Grf: Learning a general radi-
ance field for 3d scene representation and rendering. arXiv
preprint arXiv:2010.04595, 2020. 2

[61] Shubham Tulsiani, Alexei A Efros, and Jitendra Malik.
Multi-view consistency as supervisory signal for learning
shape and pose prediction. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
2897–2905, 2018. 2, 5

[62] Shubham Tulsiani, Abhishek Kar, Joao Carreira, and Jiten-
dra Malik. Learning category-specific deformable 3D mod-
els for object reconstruction. PAMI, 39(4):719–731, 2017.
1

[63] Shubham Tulsiani, Tinghui Zhou, Alexei A Efros, and Ji-
tendra Malik. Multi-view supervision for single-view re-
construction via differentiable ray consistency. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 2626–2634, 2017. 2

[64] Shubham Tulsiani, Tinghui Zhou, Alexei A. Efros, and Ji-
tendra Malik. Multi-view supervision for single-view recon-
struction via differentiable ray consistency. In Proc. CVPR,
pages 209–217, 2017. 4

[65] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Proc. NeurIPS, 2017.
2, 6

[66] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In NIPS, 2017. 4

[67] Nanyang Wang, Yinda Zhang, Zhuwen Li, Yanwei Fu, Wei
Liu, and Yu-Gang Jiang. Pixel2mesh: Generating 3d mesh
models from single rgb images. In Proceedings of the Euro-
pean Conference on Computer Vision (ECCV), pages 52–67,
2018. 2, 6, 7, 15

[68] Qianqian Wang, Zhicheng Wang, Kyle Genova, Pratul Srini-
vasan, Howard Zhou, Jonathan T Barron, Ricardo Martin-
Brualla, Noah Snavely, and Thomas Funkhouser. Ibrnet:
Learning multi-view image-based rendering. arXiv, 2021.
2

[69] Olivia Wiles, Georgia Gkioxari, Richard Szeliski, and Justin
Johnson. Synsin: End-to-end view synthesis from a sin-
gle image. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 7467–
7477, 2020. 4, 7, 16

[70] Jiajun Wu, Chengkai Zhang, Tianfan Xue, Bill Freeman, and
Josh Tenenbaum. Learning a probabilistic latent space of ob-
ject shapes via 3D generative-adversarial modeling. In Proc.
NeurIPS, 2016. 5

[71] Shangzhe Wu, Christian Rupprecht, and Andrea Vedaldi.
Unsupervised learning of probably symmetric deformable
3d objects from images in the wild. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 1–10, 2020. 2

[72] Yu Xiang, Roozbeh Mottaghi, and Silvio Savarese. Beyond
PASCAL: A benchmark for 3D object detection in the wild.
In Proc. WACV, 2014. 2

[73] Guandao Yang, Xun Huang, Zekun Hao, Ming-Yu Liu, Serge
Belongie, and Bharath Hariharan. Pointflow: 3d point cloud
generation with continuous normalizing flows. In Proceed-
ings of the IEEE International Conference on Computer Vi-
sion, pages 4541–4550, 2019. 2

[74] Lior Yariv, Yoni Kasten, Dror Moran, Meirav Galun, Matan
Atzmon, Basri Ronen, and Yaron Lipman. Multiview neu-
ral surface reconstruction by disentangling geometry and ap-
pearance. Proc. NIPS, 2020. 2, 4, 6, 7, 13, 15

[75] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa.
pixelnerf: Neural radiance fields from one or few images.
arXiv, 2020. 2, 4, 5

[76] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep
features as a perceptual metric. In Proc. CVPR, 2018. 7

[77] Yuxuan Zhang, Wenzheng Chen, Huan Ling, Jun Gao,
Yinan Zhang, Antonio Torralba, and Sanja Fidler. Im-
age gans meet differentiable rendering for inverse graph-
ics and interpretable 3d neural rendering. arXiv preprint
arXiv:2010.09125, 2020. 2

