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1. Introduction
In this document, we provide details and extended evalu-

ations omitted from the main paper1 for brevity. Sec. 2 pro-
vides extended discussions, Sec. 3 and Sec. 4 give method
details regarding the HuMoR model and test-time optimiza-
tion (TestOpt), Sec. 5 derives our optimization energy from
a probabilistic perspective, Sec. 6 provides experimental de-
tails from the main paper, and Sec. 7 contains extended ex-
perimental evaluations.

We encourage the reader to view the supplementary
videos on the project webpage2 and supplementary web-
page3 for extensive qualitative results. We further discuss
these results in Sec. 7.

2. Discussions

State Representation. Our state representation is some-
what redundant to include both explicit joint positions J and
SMPL parameters (which also give joint positions JSMPL).
This is motivated by recent works [17, 40] which show
that using an extrinsic representation of body keypoints
(e.g. joint positions or mesh vertices) helps in learning
motion characteristics like static contact, thereby improv-
ing the visual quality of generated motions. The over-
parameterization, unique to our approach, additionally al-
lows for consistency losses leveraged during CVAE training
and in TestOpt.

Another noteworthy property of our state is that it does
not explicitly represent full-body shape – only bone pro-
portions are implicitly encoded through joint locations.
During training, we use shape parameters β provided in
AMASS [22] to compute LSMPL, but otherwise the CVAE is
shape-unaware. Extending our formulation to include full-
body shape is an important direction for improved general-
ization and should be considered in future work.

Conditioning on More Time Steps. Alternatively, we

1In the rest of this document we refer to the main paper briefly as paper.
2https://geometry.stanford.edu/projects/humor/
3https://geometry.stanford.edu/projects/humor/supp.html

could condition the dynamics learned by the CVAE with
additional previous steps, i.e. pθ(xt|xt−1, . . . ,xt−p), how-
ever since xt−1 includes velocities this is unnecessary and
only increases the chances of overfitting to training motions.
It would additionally increases the necessary computation
for both generation and TestOpt.

Why CVAE? Our use of a CVAE to model motion is pri-
marily motivated by recent promising results in the graph-
ics community [17, 11]. Not only is it a simple solution, but
also affords the physical interpretation presented in the main
paper. Other deep generative models could be considered
for pθ(xt|xt−1), however each have potential issues com-
pared to our CVAE. The conditional generative adversarial
network [25] would use standard normal noise for zt, which
we show is insufficient in multiple experiments. Further-
more, it does not allow for inferring a latent transition zt.
Past works have had success with recurrent and variational-
recurrent architectures [40]. As discussed previously, the
reliance of these networks on multiple timesteps increases
overfitting which is especially dangerous for our estimation
application which requires being able to represent arbitrary
observed motions. Finally, normalizing flows [16] and neu-
ral ODEs [8] show exciting potential for modeling human
motion, however conditional generation with these models
is not yet well-developed.

In comparison to Motion VAE (MVAE) [17]. Our pro-
posed CVAE is inspired by MVAE, but introduces a number
of key improvements that enable generalization and expres-
sivity: (i) HuMoR uses a neural network to learn a con-
ditional prior pθ(zt|xt−1) rather than assuming pθ(zt) =
N (zt;0, I), (ii) the decoder predicts the change in state
∆θ rather than the next state xt directly, (iii) the decoder
outputs person-ground contacts ct which MVAE does not
model, and (iv) HuMoR trains usingLSMPL regularization to
encourage joint position/angle consistency whereas MVAE
uses the typical ELBO. Tab. 3 in the main paper shows
that these differences are crucial to achieve good results
as MVAE does not work well. The conditional prior and
LSMPL are particularly important: learning pθ(zt|xt−1) is

https://geometry.stanford.edu/projects/humor/
https://geometry.stanford.edu/projects/humor/supp.html


theoretically justified when deriving the CVAE and is in-
tuitive for human motion, while LSMPL provides a strong
supervision to improve stability of model rollout.

Furthermore, the pose state employed by HuMoR and
MVAE differ slightly. In MVAE, the root is defined by pro-
jecting the pelvis onto the ground, giving 2D linear and 1D
angular velocities. In HuMoR, the root is at the pelvis giv-
ing full 3D velocities.

A Note on β-VAE [13]. The KL weight wKL in Eq. 7 of
the main paper is not directly comparable to a typical β-
VAE [13] due to various implementation details. First, Lrec
is the mean-squared error (MSE) of the unnormalized state
rather than the true log-likelihood. The use of additional
regularizers Lreg that are not formulated probabilistically to
be part of the reconstruction loss further compounds the dif-
ference. Furthermore, in practice losses are averaged over
both the feature and batch dimensions as not to depend on
chosen dimensionalities. All these differences result in set-
ting wKL = 4e−4.

The Need for Ereg in Optimization. The motion prior term
Emot = ECVAE + Einit, which leverages our learned condi-
tional prior and GMM, nicely falls out of the MAP deriva-
tion (see Sec. 5 below) and is by itself reasonable to en-
sure motion is plausible. However, in practice it can be
prone to local minima and slow to converge without any
regularization. This is primarily because HuMoR is trained
on clean motion capture data from AMASS [22], but in the
early stages of optimization the initial state x0 will be far
from this domain. This means rolled out motions using the
CVAE decoder will be implausible and the likelihood out-
put from learned conditional prior is not necessarily mean-
ingful (since inputs will be well outside the training distri-
bution). The additional regularizers presented in the main
paper, mainly Eskel and Eenv, allow us to resolve this issue
by reflecting expected behavior of the motion model when
it is producing truly plausible motions (i.e. x0 is similar to
the training data).

On Evaluation Metrics. As discussed in prior work [30],
traditional positional metrics used to evaluate root-relative
pose estimates do not capture the accuracy of the absolute
(“global”) motion nor its physical/perceptual plausibility.
This is why we use a range of metrics to capture both the
global joint accuracy, local joint accuracy (after aligning
root joints), and plausibility of a motion. However, these
metrics still have flaws and there is a need to develop more
informative motion estimation evaluation metrics for both
absolute accuracy and plausibility. This is especially true
in scenarios of severe occlusions where there is not a sin-
gle correct answer: even if the “ground truth” 3D joints are
available, there may be multiple motions that explain the
partial observations equally well.

On Convergence. Our multi-objective optimization uses

a mixture of convex and non-convex loss functions. As
we utilize L-BFGS, the minimum energy solution we re-
port is only locally optimal. While simulated annealing
or MCMC / HMC (Markov Chain Monte Carlo / Hamil-
tonian Monte Carlo) type of exploration approaches can be
deployed to search for the global optimum, such methods
would incur heavy computational load and hence are pro-
hibitive in our setting. Thanks to the accurate initializa-
tion, we found that most of the time TestOpt converges to a
good minimum. This observation is also lightly supported
by recent work arguing that statistically provable conver-
gence can be attained for the human pose problem under
convex and non-convex regularization using a multi-stage
optimization scheme [38].

2.1. Assumptions and Limitations

On the Assumption of a Ground Plane. We use the
ground during TestOpt to obtain a transformation to the
canonical reference frame where our prior is trained. While
this is a resonable assumption in a majority of scenarios,
we acknowledge that certain applications might require in-
the-wild operation where a single ground plane does not ex-
ist e.g. climbing up stairs or moving over complex terrain.
In such scenarios, we require a consistent reference frame,
which can be computed from: (i) an accelerometer if a mo-
bile device is used, (ii) pose of static, rigid objects if an
object detector is deployed, (iii) fiducial tags or any other
means of obtaining a gravity direction.

Note that the ground plane is not an essential piece in
the test-time optimization. It is a requirement only because
of the way our CVAE is trained: on motions with a ground
plane at z = 0, gravity in the −z direction, and without
complex terrain interactions. Although we empirically no-
ticed that convergence of training necessitates this assump-
tion, other architectures or the availability of larger in-the-
wild motion datasets might make training HuMoR possible
under arbitrary poses. This perspective should clarify why
our method can work when the ground is invisible: TestOpt
might converge from a bad initialization as long as our prior
(HuMoR) is able to account for the observation.

On the Assumption of a Static Camera. While a static
camera is assumed in all of our evaluations, recent advances
in 3D computer vision make it possible to overcome this
limitation. Our method, backed by either a structure from
motion / SLAM pipeline or a camera relocalization engine,
can indeed work in scenarios where the camera moves as
well as the human targets. A more sophisticated solution
could leverage our learned motion model to disambiguate
between camera and human motion. Expectedly, this re-
quires further investigation, making room for future studies
as discussed at the end of the main paper.

Other Limitations and Failure Cases. As discussed in



Figure 1: Failure cases of TestOpt using HuMoR. Please see Sec. 2.1 or the supplementary videos for details of each.

Sec. 6 of the main paper, HuMoR has limitations that mo-
tivate multiple future directions. First, optimization is gen-
erally slow compared to learning-based (direct prediction)
methods. This also reflects on our test-time optimization.
Approaches for learning to optimize can come handy in in-
creasing the efficiency of our method. Additionally, our
current formulation of TestOpt allows only for a single out-
put, the local optimum. Therefore, future work may explore
learned approaches yielding multi-hypothesis output, which
can be used to characterize uncertainty.

Specific failure cases (as shown in the supplementary
videos and Fig. 1) further highlight areas of future improve-
ment. First, extreme occlusions (e.g. only a few visible
points as in Fig. 1 left), especially at the first frame which
determines x0, makes for a difficult optimization that of-
ten lands in local minima with implausible motions. Sec-
ond, uncommon motions that are rare during CVAE train-
ing, such as laying down in Fig. 1 (middle), can cause spu-
rious ground plane outputs as TestOpt attempts to make the
motion more likely. Leveraging more holistic scene under-
standing methods and models of human-environment inter-
action will help in these cases. Finally, our method is de-
pendent on motion in order to resolve ambiguity, which is
usually very helpful but has corner cases as shown in Fig. 1
(right). For example, if the observed person is nearly static,
the optimization may produce implausible poses due to am-
biguous occlusions (e.g. standing when really the person is
sitting) and/or incorrect ground plane estimations.

3. HuMoR Model Details
In this section, we provide additional implementation de-

tails for the HuMoR motion model described in Sec. 3 of
the main paper.

3.1. CVAE Architecture and Implementation

Body Model. We use the SMPL+H body model [31] since
it is used by the AMASS [22] dataset. However, our focus
is on modeling body motion, so HuMoR and TestOpt do not
consider the hand joints (leaving the 22 body joints includ-
ing the root). Hand joints could be straightforwardly opti-

mized with body motion, but was not in our current scope.

Canonical Coordinate Frame. To ease learning and im-
prove generalization, our network operates on inputs in a
canonical coordinate frame. Specifically, based on xt−1 we
apply a rotation around the up (+z) axis and translation in
x, y such that the x and y components of rt−1 are 0 and
the person’s body right axis (w.r.t. Φt−1) is facing the +x
direction.

Architecture. The encoder and prior networks are identi-
cal multi-layer perceptrons (MLP) with 5 layers and hidden
size 1024. The decoder is a 4-layer MLP with hidden sizes
(1024, 1024, 512). The latent transition zt ∈ R48 is skip-
connected to every layer of the decoder in order to empha-
size its importance and help avoid posterior collapse [17].
ReLU non-linearities and group normalization [39] with 16
groups are used between all layers except outputs in each
network. Input rotations are represented as matrices, while
the network outputs the axis-angle representation in R3. In
total, the CVAE network contains ∼9.7 million parameters.

3.2. CVAE Training

Losses. The loss function used for training is primarily
described in the main paper (see Eq. 7). For a training
pair (xt−1,xt), the KL divergence loss term is computed
between the output distributions of the encoder and condi-
tional prior as

LKL = DKL(qφ(zt|xt,xt−1) ‖ pθ(zt|xt−1))

= DKL(N (zt;µφ(xt,xt−1), σφ(xt,xt−1))

||N (zt;µθ(xt−1), σθ(xt−1))). (1)

The SMPL loss LSMPL is computed using the ground
truth shape parameters β provided in AMASS on the ground
truth gendered body model.

Dataset. For training, we use AMASS [22]: a large,
publicly-available motion capture (mocap) database con-
taining over 11k motion sequences from 344 different peo-
ple fit to SMPL. The database aggregates and standardizes
many mocap datasets into one. We pre-process AMASS



by cropping the middle 80% of each motion sequence, sub-
sampling to 30 Hz, estimating velocities with finite differ-
ences, and using automated heuristics based on foot con-
tacts to remove sequences with substantial terrain interac-
tion (e.g. stairs, ramps, or platforms). We automatically an-
notate ground contacts for 8 body joints (left and right toes,
heels, knees, and hands) based on velocity and height. In
particular, if a joint has moved less than 0.5cm in the last
timestep and its z component is within 8cm of the floor, it is
considered to be in contact. For toe joints, we use a tighter
height threshold of 4cm.

For training the CVAE, we use the recommended train-
ing split (save for TCD Hands [14] which contains mostly
hand motions): CMU [6], MPI Limits [2], TotalCap-
ture [35], Eyes Japan [20], KIT [24], BMLrub [34], BML-
movi [10], EKUT [24], and ACCAD [1]. For validation
during training we use MPI HDM05 [27], SFU [37], and
MPI MoSh [19]. Finally for evaluations (Sec. 5.3 of the
main paper), we use HumanEva [32] and Transitions [22].

Training Procedure. We train using 10-step sequences
sampled on-the-fly from the training set (in order to use
scheduled sampling as detailed below). To acquire a train-
ing sequence, a full mocap sequence is randomly (uni-
formly) chosen from AMASS and then a random 10-
step window within that sequence is (uniformly) sampled.
Training is performed using batches of 2000 sequences for
200 epochs with Adamax [15] and settings β1 = 0.9,
β2 = 0.999, and ε = 1e−8. We found this to be more sta-
ble than using Adam. The learning rate starts at 1e−4 and
decays to 5e−5, 2.5e−5, and 1.25e−5 at epochs 50, 80, and
140, respectively. We use early stopping by choosing the
network parameters that result in the best validation split
performance throughout training.

A common difficulty in training VAEs is posterior col-
lapse [21] – when the learned latent encoding zt is effec-
tively ignored by the decoder. This problem is exacerbated
in CVAEs since the decoder receives additional condition-
ing [17, 33]. To combat collapse, we linearly anneal wKL
from 0.0 to its full value of 4e−4 over the first 50 epochs.
We also found that our full model, which uses a learned
conditional prior, was less susceptible to posterior collapse
than the baselines that assume pθ(zt) = N (zt;0, I).

Training Computational Requirements. We train our
CVAE on a single Tesla V100 16GB GPU, which takes ap-
proximately 4 days.

Scheduled Sampling. As explained in the main paper,
our scheduled sampling follows [17]. In particular, at each
training epoch i we define a probability si ∈ [0.0, 1.0] of
using the ground truth state input xt−1 at each timestep
t in a training sequence, as opposed to the model’s own
previous output x̂t−1. Training is done using a curricu-
lum that includes si = 1.0 (regular supervised training),

si ∈ (0.0, 1.0) (mix of true and self inputs at each step),
and finally si = 0.0 (always use full generated rollouts).
Importantly for training stability, if using the model’s own
prediction x̂t−1 as input to t, we do not backpropagate gra-
dients from the loss on x̂t back through x̂t−1.

For CVAE training, we use 10 epochs of regular super-
vised training, 10 of mixed true and self inputs, and the rest
using full self-rollouts.

3.3. Initial State GMM

State Representation. Since the GMM models a single
state, we use a modified representation that is minimal (i.e.
avoids redundancies) in order to be useful during test-time
optimization. In particular the GMM state is

xGMM = [ ṙ Φ̇ J J̇ ] (2)

with ṙ, Φ̇ ∈ R3 the root linear and angular velocities,
and joint positions and velocities J, J̇ ∈ R3×22. During
TestOpt, joints are determined from the current SMPL pa-
rameters J = JSMPL = M(r,Φ,Θ, β) so that gradients of
the GMM log-likelihood (Eq. 11 in the main paper) will be
used to update the initial state SMPL parameters.

Implementation Details. The GMM uses full covariance
matrices for each of the 12 components and operates in the
same canonical coordinate frame as the CVAE. It trains us-
ing expectation maximization4 on every state in the same
AMASS training set used for the CVAE.

4. Test-Time Optimization Details
In this section, we give additional details of the motion

and shape optimization detailed in Sec. 4 of the main paper.

State Representation. In practice, for optimizing x0 we
slightly modify the state from Eq. 1 in the main paper. First,
we remove the joint positions J to avoid the previously dis-
cussed redundancy, which is good for training the CVAE but
bad for test-time optimization. Instead, we use JSMPL when-
ever needed at t0. Second, we represent body pose Θ in the
latent space of the VPoser [29] pose prior with zpose

0 ∈ R32.
Whenever needed, we can map between full joint angles and
latent pose using the VPoser encoder and decoder. Finally,
in our implementation state variables xt are by default rep-
resented in the coordinate frame of the given observations,
e.g. relative to the camera, to allow easily fitting to data -
they are transformed back into the canonical CVAE frame
when necessary as discussed below.

Floor Parameterization. As detailed in the main paper, to
obtain the transformation between the canonical coordinate
frame in which our CVAE is trained and the observation
frame used for optimization, we additionally optimize the

4using scikit-learn

https://scikit-learn.org/stable/modules/generated/sklearn.mixture.GaussianMixture.html


floor plane of the scene g ∈ R3. This parameterization is
g = dn̂ where n̂ is the ground unit normal vector and d the
plane offset. To disambiguate the normal vector direction
n̂ given g, we assume that the y-component of the normal
vector must be negative, i.e. it points upward in the camera
coordinate frame. This assumes the camera is not severely
tilted such that the observed scene is “upside down”.
Observation-to-Canonical Transformation. We assume
that gravity is orthogonal to the ground plane. Therefore,
given the current floor g and root state r,Φ (in the ob-
servation frame) we compute a rotation and translation to
the canonical CVAE frame: after the transformation, n̂ is
aligned with +z and d = 0, Φ faces body right towards
+x, and the x, y components of r are 0. With this abil-
ity, we can always compute the (observed) state at time xt
from z1:t, x0, and g by (i) transforming x0 to the canonical
frame, (ii) using the CVAE to rollout xt = f(x0, z1:t), and
(iii) transforming xt back to the observation frame.
Optimization Objective Details. The optimization objec-
tive is detailed in Sec. 4.2 of the main paper. To com-
pensate for the heavy tailed behavior of real data, we use
robust losses for multiple data terms. E2D

data uses the Geman-
McClure function [9] which for our purposes is defined as
ρ(r, σ) = (σ2r2)/(σ2 + r2) for a residual r and scaling
factor σ. We use σ = 100 for all experiments. EPC3D

data uses
robust bisquare weights [4]. These weights are computed
based on the one-way chamfer distance term (see Eq. 14 in
the main paper): residuals over the whole sequence are first
normalized using a robust estimate of the standard deviation
based on the median absolute deviation (MAD), then each
weight is computed as

wbs =

{
(1− (r̂/κ)2)2 |r̂/κ| < 1

0.0 else
(3)

In this equation, r̂ is a normalized residual and κ is a tuning
constant which we set to 4.6851.

In the Eenv energy term, we use δ = 8 cm to ensure the
z-component of contacting joints are within 8 cm of the
floor when in contact (since joints are inside the body) in
the canonical frame.
Initialization. As detailed in Sec. 4.2 of the main paper,
our optimization is initialized by directly optimizing SMPL
pose and shape parameters using Edata and Eshape along with
a pose prior Epose and joint smoothing Esmooth. The latter are
weighted by λpose and λsmooth. This two-stage initialization
first optimizes global translation and orientation for 30 opti-
mization steps, followed by full pose and shape for 80 steps.
At termination, we estimate velocities using finite differ-
ences, which allows direct initialization of the state xinit

0 .
To get zinit

1:T , the CVAE encoder is used to infer the latent
transition between every pair of frames. The initial shape
parameters βinit are a direct output of the initialization opti-

mization. Finally, for fitting to RGB(-D) the ground plane
is initialized from video with PlaneRCNN [18], though we
found simply setting the floor to y = 0 (i.e. the normal is
aligned with the camera up axis) works just as well in most
cases.

Optimization (TestOpt) Details. Our optimization is im-
plemented in PyTorch [28] using L-BFGS with a step size
of 1.0 and autograd. For all experiments, we optimize us-
ing the neutral SMPL+H [31] body model in 3 stages. First,
only the initial state x0 and first 15 frames of the latent
sequence z1:15 are optimized for 30 iterations in order to
quickly reach a reasonable initial state. Next, x0 is fixed
while the full latent dynamics sequence z1:T is optimized
for 25 iterations, and then finally the full sequence and ini-
tial state are tuned together for another 15 iterations. The
ground g and shape β are optimized in every stage.

The energy weights used for each experiment in the main
paper are detailed in Tab. 1. The left part of the table indi-
cates weights for the initialization phase (i.e. the VPoser-t
baseline), while the right part is our full proposed optimiza-
tion. A dash indicates the energy is not relevant for that data
modality and therefore not used. Weights were manually
tuned using the presented evaluation metrics and qualitative
assessment. Note that for similar modalities (e.g. 3D joints
and keypoints, or RGB and RGB-D) weights are quite simi-
lar and so only slight tuning should be necessary to transfer
to new data. The main tradeoff comes between reconstruc-
tion accuracy and motion plausibility: e.g. the motion prior
is weighted higher for i3DB, which contains many severe
occlusions, than for PROX RGB where the person is often
nearly fully visible.

5. MAP Objective Derivation

In this section, we formulate the core of the pose and
shape optimization objective (Eq. 10 in the main paper)
from a probabilistic perspective. Recall, we want to opti-
mize the initial state x0, a sequence of latent variables z1:T ,
ground g, and shape β based on a sequence of observations
y0:T . We are interested in the maximum a-posteriori (MAP)
estimate:

max
x0,z1:T ,g,β

p(x0, z1:T ,g, β|y0:T ) (4)

= max
x0,z1:T ,g,β

p(y0:T |x0, z1:T ,g, β)p(x0, z1:T ,g, β) (5)

Assuming y0 is independent of g, the left term is written

p(y0|x0, β)

T∏
t=1

p(yt|z≤t,x0,g, β) =

T∏
t=0

p(yt|xt, β) (6)

where yt is assumed to only be dependent on the initial state
and past transitions. Additionally, {z≤t,x0,g} is replaced



Initialization Full Optimization
Dataset λ3D

data λ2D
data λPC3D

data λshape λpose λsmooth λ3D
data λ2D

data λPC3D
data λshape λCVAE λinit λc λb λcv λch λgnd

AMASS (occ keypoints) 1.0 - - 0.015 2e−4 0.1 1.0 - - 0.015 5e−4 5e−4 1.0 10.0 1.0 1.0 -
AMASS (noisy joints) 1.0 - - 0.015 2e−4 10.0 1.0 - - 0.015 1e−3 1e−3 1.0 10.0 1.0 1.0 -
i3DB (RGB) - 1e−3 - 4.5 0.04 100.0 - 1e−3 - 4.5 0.075 0.075 100.0 2e3 0.0 10.0 15.0
PROX (RGB) - 1e−3 - 4.5 0.04 100.0 - 1e−3 - 4.5 0.05 0.05 100.0 2e3 100.0 10.0 15.0
PROX (RGB-D) - 1e−3 1.0 3.0 0.1 100.0 - 1e−3 1.0 3.0 0.075 0.075 100.0 2e3 100.0 10.0 90.0

Table 1: Energy weightings used in test-time optimization for each experiment in Sec. 5 of the main paper.

with xt = f(x0, z1:t) using CVAE rollout as detailed pre-
viously. The right term in Eq. (5) is written as

p(x0,g, β)

T∏
t=1

p(zt|z<t,x0,g, β) (7)

= p(x0|g)p(g)p(β)

T∏
t=1

p(zt|xt−1) (8)

where x0, zt, and g are assumed to be independent of β.
We then use these results within Eq. (5) to optimize the log-
likelihood:

max
x0,z1:T ,g,β

log p(y0:T |x0, z1:T ,g, β) + log p(x0, z1:T ,g, β)

= min
x0,z1:T ,g,β

−
T∑
t=0

log p(yt|xt, β)−
T∑
t=1

log p(zt|xt−1)

− log p(x0|g)− log p(g)− log p(β)

= min
x0,z1:T ,g,β

Edata + ECVAE + Einit + Egnd + Eshape (9)

= min
x0,z1:T ,g,β

Emot + Edata + Egnd + Eshape. (10)

Assuming each energy presented in the main paper can be
written as the log-likelihood of a distribution, this formu-
lation recovers our optimization objective besides the addi-
tional regularizers Eskel and Eenv (these terms could, in prin-
ciple, be written as part of a more complex motion prior
term Emot, however for simplicity we do not do this). Next,
we connect each energy term as presented in Sec. 4.2 of the
paper to the probabilistic perspective.
Motion Prior Emot. This term is already the log-likelihood
of our HuMoR motion model (Eq. 11 of the paper), which
exactly aligns with the MAP derivation.
Data Term Edata. The form of p(yt|xt, β) is modality-
dependent. In the simplest case the observations yt are
3D joints (or keypoints with known correspondences) and
p(yt|xt, β) is defined by yt = JSMPL

t + ε with ε ∼
N (0, σdata). Then the energy is as written in Eq. 12 of the
paper. For other modalities (Eq. 13 and 14 in the paper), the
data term can be seen as resulting from a more sophisticated
noise model.
Ground Prior Egnd. We assume the ground should stay
close to initialization so p(g) = N (g;ginit, σgnd) corre-
sponding to the objective in the paper Egnd = λgnd||g −
ginit||2.

Shape Prior Eshape. The shape β should stay near neutral
zero and so p(β) = N (0, I) which gives the energy Eshape =
λshape||β||2.

6. Experimental Evaluation Details
In this section, we provide details of the experimental

evaluations in Sec. 5 of the main paper.

6.1. Datasets

AMASS [22] We use the same processed AMASS dataset
as described in Sec. 3.2 for experiments. Experiments in
Sec. 5.3 and 5.4 of the main paper use the held out Transi-
tions and HumanEva [32] subsets which together contain 4
subjects and about 19 minutes of motion.
i3DB [26] is a dataset of RGB videos captured at 30 Hz con-
taining numerous person-environment interactions involv-
ing medium to heavy occlusions. It contains annotated 3D
joint positions at 10 Hz along with a primitive cuboid 3D
scene reconstruction. We run off-the-shelf 2D pose estima-
tion (OpenPose) [5], person segmentation [7], and plane
detection [18] models to obtain inputs and initialization for
our test-time optimization. We evaluate our method in Sec.
5.5 of the main paper on 6 scenes (scenes 5, 7, 10, 11, 13,
and 14) containing 2 people which totals about 1800 evalua-
tion frames. From the annotated 3D objects, we fit a ground
plane which is used to compute plausibility metrics.
PROX [12] is a large-scale dataset of RGB-D videos cap-
tured at 30 Hz containing person-scene interactions in a va-
riety of environments with light to medium occlusions. We
use a subset of the qualitative part of the dataset to evaluate
the plausibility of our method’s estimations. The data does
not have pose annotations, but does contain the scanned
scene mesh to which we fit a ground plane for plausibility
evaluation. We obtain 2D pose, person masks, and ground
plane initialization in the same way as for i3DB. We evalu-
ate in Sec. 5.5 of the main paper on all videos from 4 chosen
scenes (N3Office, N3Library, N0Sofa, and MPH1Library)
that tend to have more dynamic motions and occlusions. In
total, these scenes contain 12 unique people and about 19
minutes of video.

6.2. Baselines and Evaluation Metrics

Motion Prior Baselines. To be usable in our whole frame-
work (e.g. test-time optimization with SMPL), the MVAE



baseline is our proposed CVAE with all ablations applied
simultaneously (no delta step prediction, no contact predic-
tion, no SMPL losses, and no learned conditional prior).
Note that this differs slightly from the model as presented
in [17]: the decoder is an MLP rather than a mixture-of-
experts and the layer sizes are larger to provide the neces-
sary representational capacity for training on AMASS. All
ablations and MVAE are trained in the exact same way as
the full model. Additionally, when used in test-time opti-
mization we use the same energy weightings as described
in Tab. 1 but with irrelevant energies removed (e.g. the No
Contacts ablation does not allow the use of Eenv). Note that
Einit is still used with MVAE and all ablations, the only thing
that changes is the prior in ECVAE.
Motion Estimation Baselines. The VPoser-t baseline is ex-
actly the initialization phase of our proposed test-time opti-
mization, i.e. we use weightings in Tab. 1.

The PROX-RGB baseline fits the neutral SMPL-X [29]
body model to the same 2D OpenPose detections used by
our method. It does not use the face or hand keypoints
for fitting similar to our approach. The PROX-D baseline
uses the fittings provided with the PROX dataset, which
are on the known gendered SMPL-X body model and use
face/hand 2D keypoints for fitting.

The VIBE baseline uses the same 2D OpenPose detec-
tions as our method in order to define bounding boxes for
inference. We found this makes for a more fair comparison
since the real-time trackers used in their implementation5

often fail for medium to heavy occlusions common in our
evaluation datasets.
Evaluation Metrics. In order to report occluded (Occ) and
visible (Vis) positional errors separately, we must determine
which joints/keypoints are occluded during evaluation. This
is easily done for 3D tasks where “occlusions” are synthet-
ically generated. For RGB data in i3DB, we use the person
segmentation mask obtained with DeepLabv3 [7] to deter-
mine if a ground truth 3D joint is visible after projecting it
to the camera.

For a joint pt ∈ JSMPL
t at time t the acceleration magni-

tude (Accel) is computed as

a = ||(pt−1 − 2pt + pt+1)/h2|| (11)

where h = 1/30 for all datasets. Ground penetration fre-
quency (Freq) for a given penetration threshold gthresh is
computed over all D frames in a dataset as∑

D 1(dltoe
pen > gthresh) + 1(drtoe

pen > gthresh)

2D
(12)

where 1(·) is the indicator function and dltoe
pen , d

rtoe
pen are the

penetration distances (shortest distance to the ground plane)
for the left and right toe joints at the current frame.

5see Github

6.3. Estimation from 3D Observations

For fitting to 3D data, as presented in Sec. 5.4 of the main
paper, the observation and canonical coordinate frames are
identical since AMASS data is used, therefore TestOpt does
not optimize the ground plane g.

6.4. Estimation from RGB(-D) Observations

i3DB. Positional joint errors are computed using a 12-joint
subset of the ground truth 3D joint annotations which corre-
spond to the SMPL joints used by our method and all base-
lines. These include ankles, knees, wrists, elbows, shoul-
ders, the neck, and the root. The leg joints reported in Tab.
3 of the main paper include the ankles and knees.

In fitting to i3DB videos, we mask 2D joint observations
using the person segmentation mask which we found ben-
eficial under the numerous severe occlusions where Open-
Pose may predict spurious 2D pose with incorrectly high
confidence.

PROX. For fitting to PROX RGB(-D) videos we found it
best not to mask out 2D joints based on the person segmen-
tation mask, as occlusions are typically minor and Open-
Pose is relatively accurate. However, the segmentation is al-
ways used on the point cloud back-projected from the depth
map to ignore points far from the person.

7. Extended Evaluations
In this section, we present experimental evaluations to

supplement those in Sec. 5 of the main paper, which were
ommitted due to space constraints.

7.1. Qualitative Evaluation

Please see the supplementary videos for extensive qual-
itative results corresponding to each experiment in Sec. 5 of
the main paper. In this document, we show various repre-
sentative examples from these videos and summarize im-
portant results.

Fig. 4 shows results fitting to occluded 3D keypoints
(Sec. 5.4 of the main paper). Performance of TestOpt with
HuMoR is compared to the VPoser-t and MVAE baselines
on two sequences. VPoser-t fails to produce any plausible
lower-body motion since it uses only a pose prior, while
using MVAE as the motion prior often gives unnatural and
implausible motions that don’t align well with the observed
keypoints.

Fig. 5 shows results using TestOpt with HuMoR for fit-
ting to noisy 3D joints (Sec. 5.4 of the main paper). Both
the estimated motion and contacts are shown for a crawling
sequence. Note that HuMoR recovers complex contact pat-
terns involving not only the feet, but also hands and knees.

Fig. 6 demonstrates fitting performance on RGB videos
from PROX compared to the PROX-RGB baseline (Sec. 5.5

https://github.com/mkocabas/VIBE


Global Joint Error Root-Aligned Joint Error Ground Pen
Method Vis Occ All Legs Vis Occ All Legs Accel Freq Dist
No Einit 28.04 39.37 30.96 34.91 12.11 22.27 14.73 21.40 2.57 2.80% 0.85
No Ec 29.17 40.62 32.12 35.83 12.99 24.34 15.92 22.66 2.75 1.98% 0.67
No Eb 28.29 39.77 31.25 34.37 13.00 24.36 15.93 22.31 2.93 4.43% 1.13
No Eskel 32.87 44.16 35.78 37.55 14.67 26.82 17.80 24.18 3.81 4.35% 1.29
No Eenv 26.83 37.62 29.61 32.91 12.09 22.04 14.66 20.96 2.51 2.10% 0.66
Full Energy 26.00 34.36 28.15 31.26 12.02 21.70 14.51 20.74 2.43 2.12% 0.68

Table 2: Motion and shape from RGB video (i.e. 2D joints) on i3DB [26]. Joint errors are in cm and acceleration is m/s2.
Results use TestOpt with HuMoR. The top part shows various energy terms ablated.

of the main paper). PROX-RGB produces temporally inco-
herent results since it operates on single frames. However, it
also uses the scene mesh as input which allows for plausible
poses when the person is fully visible. This does not greatly
improve results under occlusions, though, often reverting to
a mean leg pose similar to VPoser-t and VIBE.

Fig. 7 demonstrates fitting to RGB-D videos from PROX
compared to the PROX-D baseline (Sec. 5.5 of the main pa-
per). Using motion as a prior allows for natural interaction
within the scene, as detailed in the figure caption.

Fig. 8 shows ground plane estimations when fitting to
RGB-D data for each of the scenes in our PROX dataset.
The estimated floor is rendered within the true scene mesh
for reference.

Finally, we evaluate TestOpt with HuMoR on highly dy-
namic dancing data to demonstrate the generalization abil-
ity of the CVAE motion model. Fig. 9 shows a sample
of frames from motions fit to the DanceDB [3] subset of
AMASS [23]. In this case, the observations are full-body
3D keypoints. Though HuMoR is trained on data with few
dancing motions, it is able to capture these difficult motions
at test time since it only operates on pairs of frames. Ad-
ditionally, Fig. 2 shows fitting results on RGB videos from
the AIST dance dataset [36]. Since HuMoR allows for large
accelerations, it accurately generalizes to fast motions (top -
note motion blur). Moreover, it is able to recover from poor
2D joint detections from OpenPose due to the cartwheel
motion (bottom).

7.2. Optimization Objective Ablation

In this experiment, we analyze the effect of the en-
ergy terms and regularizers in our test-time optimiza-
tion (TestOpt) formulation. Tab. 2 reports results on the
i3DB [26] dataset using TestOpt with HuMoR for different
energy ablations.

No Einit does not use the initial state Gaussian mixture
model (GMM) as part of the motion prior (i.e. assumes a
uniform prior over the initial state). This means the input
x0 to CVAE rollout may not be plausible, especially early
in optimization, leading to degraded performance. No Ec

Dataset Batch Size Mean Seq Time
AMASS (occ keypoints) 12 2.95
AMASS (noisy joints) 12 2.45
i3DB (RGB) 6 6.42
PROX (RGB) 6 4.48
PROX (RGB-D) 6 4.85

Table 3: Mean per-sequence optimization times (in min-
utes) for evaluations on each dataset. Optimizations are
done on batches of 3s (90 frame) sequences.

and No Eb remove individual terms of the skeleton regu-
larization: the joint and bone length consistency. No Eskel

removes the entire skeleton regularization (both Ec and Eb),
severely affecting final performance. This term is impor-
tant to ensuring the CVAE is actually rolling out realis-
tic motions. Finally, No Eenv removes the contact velocity
and height terms, increasing errors particularly for occluded
joints while resulting in similar plausibility metrics.

7.3. Sensitivity to Occlusions and Noise

Next, we look at performance on estimation from 3D
data under increasing levels of occlusions and noise. Simi-
lar to Sec. 5.4 in the main paper, we consider fitting to oc-
cluded 3D keypoints (points under a given height threshold
are unobserved) and 3D joint locations with added Gaussian
noise. For this experiment, we use the held out Transitions
subset of AMASS [22].

Mean keypoint errors for all and occluded points are
shown for increasing occlusions in Fig. 3(a)(b). From left to
right the occluded height threshold is 0.0, 0.3, 0.6, 0.9, and
1.2 m which roughly corresponds to the lower body being
occluded from the floor up through the body parts on the x-
axis. With no occlusions (None) VPoser-t most closely fits
the clean points, while HuMoR outperforms MVAE due to
improved expressiveness. As occlusions increase, HuMoR
and MVAE perform similarly while occluded errors increase
greatly for VPoser-t as also observed in other experiments.
Note that after the knees become occluded, errors for oc-
cluded keypoints tend to saturate as performance is depen-



Figure 2: Example sequences using TestOpt with HuMoR
to fit to 2D joints in AIST dance videos [36]. HuMoR gen-
eralizes to these highly dynamic motions and robustly re-
covers from inaccurate 2D joint detections (bottom).

dent nearly entirely on the motion prior.
Mean joint acceleration magnitude is shown for increas-

ingly noisy 3D joint observations in Fig. 3(c). From left
to right noise increases to 8 cm standard deviation. Impor-
tantly, the performance of HuMoR stays relatively stable.
HuMoR increases only 25% while VPoser-t and MVAE in-
crease 124% and 57%, respectively.

7.4. Computational Requirements of TestOpt

For all experiments presented in the main paper, we per-
form optimization on batches of 3s sequences (90 frames).
Tab. 3 shows the mean per-sequence optimization times for
each of these experiments where AMASS corresponds to ex-
periments in Sec. 5.4 of the paper and i3DB and PROX cor-
respond to Sec. 5.5. The per-sequence time is computed
by taking the total time to optimize over the whole dataset
divided by the number of 3s sequences. Note that batching
speeds up this large scale optimization significantly, i.e. op-
timizing a single sequence will only be slightly faster than
a batch of sequences since the primary bottleneck is CVAE
rollout. All batched optimizations were performed on a 24
GB Titan RTX GPU, though an 8 GB GPU is sufficient to
optimize a single sequence.
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Figure 3: Keypoint errors for all (a) and occluded (b) points for increasing levels of occlusion when fitting to 3D keypoints
with TestOpt. (c) Joint acceleration magnitude for increasing levels of noise when fitting to 3D joints with TestOpt.
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and A. Weber. Documentation mocap database HDM05.
Technical Report CG-2007-2, Universität Bonn, 2007. 4

[28] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban
Desmaison, Luca Antiga, and Adam Lerer. Automatic dif-
ferentiation in pytorch. In Advances in Neural Information
Processing Systems, 2017. 5

[29] Georgios Pavlakos, Vasileios Choutas, Nima Ghorbani,
Timo Bolkart, Ahmed A. A. Osman, Dimitrios Tzionas, and
Michael J. Black. Expressive body capture: 3D hands, face,
and body from a single image. In Proceedings IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR), pages
10975–10985, 2019. 4, 7

[30] Davis Rempe, Leonidas J. Guibas, Aaron Hertzmann, Bryan
Russell, Ruben Villegas, and Jimei Yang. Contact and hu-

man dynamics from monocular video. In Proceedings of the
European Conference on Computer Vision (ECCV), 2020. 2

[31] Javier Romero, Dimitrios Tzionas, and Michael J. Black.
Embodied hands: Modeling and capturing hands and bod-
ies together. ACM Transactions on Graphics, (Proc. SIG-
GRAPH Asia), 36(6), Nov. 2017. 3, 5

[32] Leonid Sigal, Alexandru O Balan, and Michael J Black. Hu-
maneva: Synchronized video and motion capture dataset and
baseline algorithm for evaluation of articulated human mo-
tion. International journal of computer vision, 87(1-2):4,
2010. 4, 6

[33] Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning
structured output representation using deep conditional gen-
erative models. In C. Cortes, N. Lawrence, D. Lee, M.
Sugiyama, and R. Garnett, editors, Advances in Neural Infor-
mation Processing Systems, volume 28, pages 3483–3491.



Figure 7: Comparison to PROX-D on PROX RGB-D data. Motion and shape results are rendered within the ground truth
scene mesh for reference. Though our method does not use the scene mesh as input like PROX-D, it still produces motions
that are plausible within the environment by using HuMoR as the motion prior, sometimes better than PROX-D as indicated
by the red and green boxes here.
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