
PIRenderer: Controllable Portrait Image Generation via Semantic Neural
Rendering

Supplementary Material

A . Additional Results of PIRenderer
In this section, we provide additional results of the proposed model. To achieve more intuitive comparisons, we show the

results in a Supplementary Video. In this video, the following materials are provided:

• Results of the intuitive portrait image editing task. Although many commercial softwares are available for portrait
image editing, complex and high-level modifications (e.g. modifying head posture or expression) are not supported or
require professional skills. We show that our model can achieve interactive real-world facial image editing, which will
greatly reduce the difficulty of image editing and help users to obtain satisfactory images.

• Results of the motion imitation task. In the same-identity reconstruction task, we show that our model can generate
coherent videos with realistic details. Meanwhile, compared with the results of GFLA and FOMM, our model is more
robust to the occlusions in the driving videos. In the cross-identity motion imitation task, we show that the proposed
model can generate realistic results while preserving the source identity.

• Results of the audio-driven facial reenactment task. The generated videos as well as the input audios are provided.
It can be seen that our model can generate accurate mouth motions and realistic other motions (eyes, head poses, etc.)
for the given audios. Meanwhile, we can generate various motions from only single input audios and transform these
motions into coherent videos.

• Results of the ablation study. We provide the results of the ablation study described in Sec. B . Using the coefficients
of a window of continuous frames as the motion descriptors of the center frame can help the proposed model to achieve
coherent results.

• Results of the facial interpolation task. The results of the facial interpolation task described in Sec. C are reported.
It can be seen that our model learns a linear latent-space Z , which enables interpolating images with smooth-varying
motions.

B . Analysis of the Target Motion Descriptor
In this paper, we extract 3DMM coefficients using an off-the-shelf 3D face reconstruction model [1]. Although this

method produces relatively accurate results, errors and noise are inevitable. In our main paper, we mentioned that the
estimation errors cause mismatches between the extracted motions and the real motions of target images, which will lead to
performance degradation. Meanwhile, failing to model the temporal correlations of videos will cause incoherent videos. To
alleviate these problems, we propose to use the coefficients of a window of continuous frames as the motion descriptors of
the center frame. In this section, we prove the effectiveness of this choice.

An ablation model is trained by using the 3DMM coefficients of a single input frame as the target motion descriptors.
The evaluation results of the same-identity reconstruction task are shown in Tab. B.1. It can be seen that our PIRenderer can
generate images with more accurate target motions. This indicates that our network models the temporal correlations from
the coefficients of the continuous frames and thus reduces the errors. Meanwhile, the subjective comparisons are provided in
our supplementary videos. It can be seen that the ablation model cannot generate coherent videos, which reduces the reality
of the results. Our PIRenderer can generate coherent results with accurate motions.

1

FID AED APD LPIPS

Ablation 8.752 0.1169 0.0182 0.1370
Ours 8.260 0.1106 0.0164 0.1285

Table B.1. Analysis of the target motion descriptor. The ablation model is trained by using the 3DMM coefficients of a single input frame,
while our model uses the coefficients of a window of continuous frames as the motion descriptors of the center frame.

𝛼 = 0 𝛼 = 1𝛼 = 0.14 𝛼 = 0.28 𝛼 = 0.56 𝛼 = 0.70 𝛼 = 0.84𝛼 = 0.42

Figure C.1. The interpolation results of latent-space Z . Our model can generate images with smooth-varying motions.

C . Interpolation of Latent-space Z
In this paper, we use a mapping network fm : P → Z to map motion descriptors p to latent vectors z. In this section, we

show that our model can learn a linear latent-space Z which supports the task of facial motion interpolation. The interpolated
images are generated by latent vectors z′ calculated by:

z′ = αfm(p1) + (1− α)fm(p2) (1)

where p1 and p2 are two different motions and fm is our mapping function. We first implement the interpolation task with
real-world motions. The generated results can be found in Fig. C.1. It can be seen that our model can generate images with
smooth-varying motions. Both expressions and poses are linearly transformed from the motion p1 to the motion p2 as the
α increasing. Then we show that the interpolation can also be performed with a specific motion attribute. Fig. C.2 provides
the generated results. Given motions p1 and p2 with the same expressions but different poses, the interpolated latent vectors
z′ control to generate images with the same expressions and smoothly-varying poses. Meanwhile, given motions p1 and
p2 with the same poses but different expressions, only the facial expressions change in the interpolated results. The facial
motion interpolation task can enable many applications such as exemplar-based portrait expression manipulation.

𝛼 = 0 𝛼 = 1𝛼 = 0.14 𝛼 = 0.28 𝛼 = 0.56 𝛼 = 0.70 𝛼 = 0.84𝛼 = 0.42

Figure C.2. The interpolation results of latent-space Z . The top four rows show the results generated by interpolating motions with the
same expressions and different poses. The bottom four rows show the results generated by interpolating motions with the same pose and
different expressions.

D . Implementation Details
D .1. Implementation Details of PIRenderer

Model Architecture. The architecture of our PIRenderer is shown in Fig. D.4. The mapping network is responsible for
transform the target motions p ∈ P into latent vectors z ∈ Z . As discussed in our main paper, to alleviate the problem
brought by the coefficient estimation errors, we use the coefficients of a window of k continuous frames as the motion
descriptor of the center frame. We set k = 27 for all experiments. Meanwhile, the 3D face reconstruction models always
employ face alignment as the pre-processing method to crop input images such that faces of inputs have similar size and
position to improve their performance. Therefore, instead of providing absolute translation parameters t, these methods
only estimate relative translations t′. To describe the absolute face positions, we use the cropping parameters tc together
with the relative translations t′ as our translations. The architecture of the mapping network is shown in Fig. D.4. We use
1D convolution layers to process the input motions. Leaky-ReLU is used as the activation function in this network. The
architectures of the warping and editing network are shown in Fig. D.4. Auto-encoder structures are used to design these
networks. Skip connections are employed to skip the high-resolution features. We use the architectures shown in Fig. D.3
as the basic components. ADAIN operation is used after each convolution layer of (a) ConvDown, (b) ResBlock, and (c)
ResBlockUp to inject the latent vectors z. Layer normalization is used as the activation normalization method of the other
convolution layers. We use Leaky-ReLU as the non-linear function in our model.

Training and Inference. We train our model in stages. The mapping network and the warping network are first pre-
trained for 200k iterations. Then we train the whole model for another 200k iteration in an end-to-end manner. We adopt
the ADAM optimizer with an initial learning rate as 10−4. The learning rate is decreased to 2 × 10−5 after 300k iterations.
The batch size is set to 20 for all experiments. We set λw = 2.5, λc = 4, and λs = 1000. In the inference phase, we use
coefficients of k = 27 continuous frames as the motion descriptors for the reenactment task. In the intuitive image editing
task, we repeat the target motion k = 27 times as the motion descriptors.

D .2. Implementation Details of fθ
We extent our PIRenderer to tackle the audio-driven facial reenactment task by training an additional mapping function

fθ. The mapping function fθ is responsible for generating sequential 3DMM coefficients from audios. As discussed in
the main paper, Normalizing flow is employed to design fθ. The core idea of normalizing flow is to train an invertible
and differentiable nonlinear mapping function that maps samples from a simple known distribution (e.g. Gaussian) to a more
complex distribution. In our conditional setting, the function is trained to map motion-condition pairs (p, c) to latent variables
n with n = f−1θ (p, c). Function fθ is composed of a sequence of invertible transformations: fθ = f1 ◦ f2 ◦ · · · ◦ fK , such
that the relationship between p and n can be written as:

n
f1(∗,c)←−−−→ h1

f2(∗,c)←−−−→ h2 · · ·
fK(∗,c)←−−−−→ p (2)

The key aspect of normalizing flows is that the probability density function pp|c can be explicitly computed as:

log pp|c(p|c, θ) = log pn(f
−1
θ (p, c)) + log

∣∣∣∣det
∂f−1θ
∂p

(p, c)

∣∣∣∣
= log pn(f

−1
θ (p, c)) +

K∑
j=1

log

∣∣∣∣∣det
∂f−1j
∂hj

(hj , c)

∣∣∣∣∣
(3)

where we define hK ≡ p for conciseness. We design fn using a similar architecture as that of Glow [2]. Each transformation
contains three sub-steps: an actnorm function; a linear transformation; and an affine coupling layer; Let x signifies the
input of each layer, and y signifies the output. Both x and y are tensors of shape [c × t] with channel dimension c and
time dimension t. Actnorm is an affine transformation of the activations using a scale and bias parameter per channel with
yt = s� xt + b. The linear transformation is used to transform the input tensor with the trainable parameters W ∈ RC×C
with yt = Wxt. The affine crouping layer first splits the input tensor (xa,xb) = Split(x). Then, a neural network is used to
predict the affine parameters (log s, t) = NN(concat(xb, c)). Finally the output is obtained by y = concat(s� xa + t,xb).

Our task requires generating sequential motion descriptors p. Thus, modeling the temporal correlations is a crucial
challenge for this task. To handle this, we generate the motions in a recurrent manner. The previously generated k motions
pi−k:i−1 are used as a part of conditional information for the current generation. Meanwhile, we design the neural network

Conv 4X4, d1s2

Conv 3X3, d1s1

Conv 3X3, d1s1

Conv 3X3, d1s1

Sum

Conv 3X3, d1s1

TransConv 3X3, d1s2

Sum

TransConv 3X3, d1s2
Conv 3X3, d1s1

Average Pooling

Conv 3X3, d1s1

Upsample

(a) ConvDown (b) ResBlock (c) ResBlockUp (d) SampleDown (e) SampleUp

Figure D.3. The components used in our networks. The ADAIN operation is used after each convolution layer of (a) ConvDown, (b)
ResBlock, and (c) ResBlockUp.

Center Crop

1D
Co

nv
7d

1,
25

6

1D
Co

nv
3d

3,
25

6

Le
ak

y-
Re

LU

Av
er

ag
e

Po
ol

in
g

(73, 27)

(256, 21) (256, 15)

(256, 1)p z

Center Crop

1D
Co

nv
3d

3,
25

6

Le
ak

y-
Re

LU

(256, 9) Center Crop

1D
Co

nv
3d

3,
25

6

Le
ak

y-
Re

LU

(256, 3)(256, 15) (256, 9)

Concatenate

(b) The Warping Network

ConvDown, 128

ConvDown, 256

ConvDown, 256

ResBlockUp, 256

ResBlockUp, 256

ConvDown, 256

Source Image

ConvDown, 64

Conv7x7, 32

Concatenate

ResBlockUp, 128

Concatenate

Conv7x7, 2

Flow Field

Sum

SampleDown, 256

SampleDown, 256

2X ResBlock, 256

SampleUp, 256

Source Image + Warp Image

SampleDown, 128

Conv7x7, 64

Generated Image

Sum

2X ResBlock, 256

SampleUp, 128

Sum

2X ResBlock, 128

SampleUp, 64

Conv3x3, 256

Conv3x3, 128

Conv3x3, 64

Conv7x7, 3

(c) The Editing Network

(a) The Mapping Network

Figure D.4. The architecture of our PIRenderer.

NN(∗) in the affine coupling layers as LSTM modules to further model the temporal correlations. Instead of generating the
motions p using a single fθ, we design two mapping functions fθ1 and fθ2 to generate expressions β ∈ R64 and positions
R ∈ SO(3), t ∈ R3 respectively. For the expression mapping function fθ1 , the conditional information ci consists of two
parts: a window of previous expressions βi−k:i−1 and a window of audio single ai−k:i+τ . For the position mapping function
fθ2 , in addition to the previously generated motions and the input audios, we further add the initial position of the first frame
to the conditional information to help the model building the long-term relationship. We design K = 10 for fθ1 and K = 8
for fθ2 . For all experiments, we set k = 5 and τ = 6.

In the training phase, we train our mapping functions to generate latent vectors ni from the ground truth motion pi and
the corresponding conditional information ci. The negative log-likelihood loss is used as the training loss.

Lnll = − log pn(ni)−
K∑
j=1

log

∣∣∣∣∣det
∂f−1j
∂hj

(hj , ci)

∣∣∣∣∣ (4)

In the inference phase, we randomly sample latent vectors n ∼ p(n) and generate the sequential motions using p = fθ(n, c).
The motions in the conditional information c0 are initialized as the motion of the source image.

References
[1] Yu Deng, Jiaolong Yang, Sicheng Xu, Dong Chen, Yunde Jia, and Xin Tong. Accurate 3d face reconstruction with weakly-supervised

learning: From single image to image set. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops, pages 0–0, 2019. 1

[2] Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions. In Advances in neural information
processing systems, pages 10215–10224, 2018. 4

