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A. Ablation Study for Attention
In this section, we perform an ablation study on the different designs of the self-attention unit in our model. We compare

our design with two alternatives, the non-local design [1] and the one-stream design (one CNN). The CNN used in our model
is composed of three 3× 3 convolution layers with a stride of 1 and padding of 1, of which the activation function is ReLU.
As shown in Table 1, our design significantly outperforms the other two designs. One possible reason is that the reception
field after the dilated bottleneck is large enough, and thus the extracted feature contains both local and global features.
Therefore, we do not need to perform non-local operations. Moreover, two-branch CNNs provide more parameters to learn
the attention map. The only exception is the MSE, and the underlying reason may be the false-positive unseen vehicles our
model predicted. The example of false-positive unseen vehicles can be observed in the fourth column in Figure 2.

Method MR (%) ↓ Aggressiveness ↓ UR0.3 (%) ↑ UR0.5 (%) ↑ UR0.7 (%) ↑ MSE↓
Ours w/ non-local 5.48 2.58 39.45 22.16 6.92 6.70
Ours w/ one-stream 5.30 2.60 40.01 22.87 9.70 6.52
Ours 1.37 2.48 63.28 43.48 18.85 10.61

Table 1. Ablation study for the self-attention unit. Our two-stream version outperforms the non-local version and one-stream version.

B. Key Hyper-parameter Tuning
We can vary γh to trade-off between safety and aggressiveness. As shown in Table 2, when γh becomes larger, the MR

decreases, and the values of Aggressive and MSE increase, which shows that the prediction becomes more conservative. For
the loss weight γu for the unseen loss, we empirically find it better to set γu = γh.

Method MR (%) ↓ Aggressiveness ↓ UR0.3 (%) ↑ UR0.5 (%) ↑ UR0.7 (%) ↑ MSE↓
γh = 0 18.00 1.39 36.98 20.73 6.76 6.55
γh = 10 7.62 1.45 49.95 29.96 11.69 9.25
γh = 100 6.89 1.26 53.14 32.63 11.86 9.48
γh = 1000 1.37 2.48 63.28 43.48 18.85 10.61
γh = 10000 0.63 2.54 60.35 50.76 23.24 12.60

Table 2. Ablation study for the weight for hard loss. Here we set γu = γh. When the weights become larger, the MR decreases, and the
Aggressiveness and MSE increase, indicating the prediction tends to be more conservative.

C. More Qualitative Results
Here we provide more qualitative results on the nuScenes dataset as shown in Figure 1. We also provide qualitative results

on the Lyft dataset as shown in Figure 2. We can observe that our prediction is more accurate than the baselines and includes
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the predictions of unseen vehicles from these qualitative results. Besides, the earliest occupancy map captures multi-modal
predicted motion in a single output. Furthermore, the motions predicted by our method tend to have a bit larger range,
which shows that our model captures uncertainty of prediction. Therefore, our method can generalize well to complex urban
environments by modeling motion prediction as an image-to-image translation problem.

Input GT MTP Trajectron++ P3 Ours

Figure 1. Visual comparisons between ours and other baselines on the nuScenes dataset. The unseen vehicles are annotated with red
bounding boxes. All the prediction results are visualized with the earliest occupancy maps. Our predictions are earlier but as accurate as
possible.
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Figure 2. Visualization on the Lyft dataset. The inputs are rasterized using the official API of the Lyft dataset. The fourth row is a failure
case with predicted false positives of unseen vehicles.



D. Representation Definition
D.1. Representation Illustration
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Figure 3. Illustration for the earliest occupancy time at a specific location. The orange region indicates that this location is occupied. (a)
This location is once occupied. (b) This location is occupied multiple times. (c) This location is never occupied.

As mentioned in Section 3.2, we formulate the earliest occupancy map E(x, y) as

E(x, y) = min({∆t|Ot+∆t(x, y) = 1} ∪ {T}), ∀(x, y) ∈ I, (1)

where t + ∆t is a timestep between t and t + T . Here we explain the earliest occupancy time using Figure 3 in different
cases.

D.2. Discussion on Representation

In the main paper, we introduce and discuss the earliest occupancy map in the case of predicting short-term future T
timesteps. For each location, the duration between the earliest occupancy time and the end of the prediction horizon can be
considered occupied, which adds a constraint to the planner. When the Missing Rate for the earliest occupancy map is nearly
zero, the planning will be safe. However, this constraint may be too strict for the planner. Ideally, the occupancy map should
be conservative to account for safety and leave a large feasible solution space for the planner at the same time.

Latest free map. To relax the constraint, we present a symmetric motion representation of earliest occupancy map
E(x, y), latest free map L(x, y). For each position, the duration of occupancy can be calculated from the two maps. For
those positions not being occupied in the future, we set E(x, y) = T ; thus, we also set L(x, y) = T , which means that the
duration being occupied is 0. For those positions predicted to be occupied, L(x, y) indicates the first time they will no longer
be occupied. Thus, we formulate the latest free map L(x, y) as

L(x, y) =

{
T,E(x, y) = T

min{∆t|Ot+T−∆t(x, y) = 1}, E(x, y) < T
(2)

where t + T − ∆t is a timestep between t and t + T . Similar to the constraint on prediction of PE(x, y)1, the prediction
PL(x, y) should be later than the ground truth L(x, y) but as accurate as possible. Therefore, we also can formulate it by

1To differentiate prediction of latest free map, we use PE(x, y) to represent P (x, y) in our main paper.



defining a hard loss LL
h and a soft loss LL

s :

LL
h =

∑
(x,y)∈I

1(PL(x, y) < L(x, y)).

LL
s =

∑
(x,y)∈I

PL(x, y).
(3)

We use the hard loss to penalize predictions earlier than the ground truth. Note that the hard loss constrains the prediction
PL(x, y) to be lower bounded by ground truth L(x, y), we thus add a soft loss to make the prediction close to the ground
truth. Similar to E(x, y), we adopt a MSE term to stabilize the training,

LL
rec =

∑
(x,y)∈I

‖PL(x, y)− L(x, y)‖2. (4)

Combining earliest occupancy map and latest free map, the timesteps between these two maps can be considered as
being occupied for each location. How to use these two losses will be discussed in the following sections. (added to the
original one)

D.3. Additional Experiment

Method MR* (%) ↓ MSE1↓ MSE2 ↓
Ours 4.27 6.48 3.98

Table 3. Result for modified model to predict both earliest occupancy map and latest free map.

Model. For the model, we modified the customized U-Net in the main paper. We add one additional output channel. The
first channel is for the predicted earliest occupancy map PE(x, y), and the second channel is for the predicted latest free map
PL(x, y). The full objective function for the model is:

L = γhLh + Ls + Lrec + γhLL
h + LL

s + LL
rec, (5)

where the weight for hard losses γh = 1000. In this section, to simplify the problem, we do not consider the unseen vehicles.
Metric. For the metric, we modified the Missing Rate (MR) in the main paper to Missing Rate* (MR*). MR* indicates

the percentage of the predicted earliest occupancy map that is later than the ground truth or the predicted latest free map
that is earlier than the ground truth. Furthermore, we also adopt MSE metric to evaluate the accuracy. We use MSE1 to
indicate the distance between the predicted earliest occupancy map and ground truth earliest occupancy map and use MSE2

to indicate the distance between predicted latest free map and ground truth latest free map.
Evaluation. The result is shown in Table 3. Considering there is no suitable baseline for this new task, we only evaluate

our model to show it can complete this more complex task. The missing rate is higher than only predicting the earliest case;
however, it is still very small. The MSE metric for both the maps is small, which means the range between these two maps is
tight, and the predictions are accurate.
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