
Supplementary Material for:
Robust Automatic Monocular Vehicle Speed Estimation for Traffic Surveillance

Jerome Revaud Martin Humenberger
NAVER LABS Europe

firstname.lastname@naverlabs.com

A. Additional information about the CCTV
dataset

In this section, we include additional qualitative and
quantitative information about the CCTV dataset. Even
though all clips were taken in daylight in relatively good
conditions, they constitute realistic CCTV footage. Fig-
ure A.2 shows examples containing intersections (22 scenes
out of 40), complex layouts, and road turns. Figure A.1
presents detailed statistics about the CCTV dataset such
as the image size, video duration, vehicle tracks, and ve-
hicle speeds. Finally, Figure A.9 shows snapshots of all
40 videos. Note that several clips originate from the same
scene (i.e. CCTV camera).

B. Simplified camera model

One might argue that the simplified camera model used
in our approach (Section 3.1 of the main paper) could neg-
atively impact performance in real-world situations where
cameras are far from being perfect. We therefore conduct
an experimental study on the impact of these simplifying
assumptions on the final speed error. Figure A.3 presents
the accuracy of both proposed approaches (‘3D-Reproj’ and
‘Learned+RANSAC’) when the camera lens is in fact im-
perfect (i.e. off-centered with roll and radial distortion im-
plemented as proposed in [3]), measured on the synthetic
dataset under perfectly controlled conditions. As can be
seen in Figure A.3, we observe limited impact on final speed
accuracy despite the simplifying assumptions being used.

In addition, we have also experimented with more com-
plex camera models (e.g. with explicit principal point and
camera roll). We did not observe significant improvements
compared to the simplified camera model (perhaps due to
the larger search space). We believe that this reason caused
other researchers to adopt this strategy as well [5, 3, 2].

C. Implementation details for the learned
method

C.1. Homography fitting using RANSAC

In Section 3.2 of the main paper, we explain how we
perform a RANSAC procedure to robustly fit a homography
to all predictions. In more detail, we sample random pairs
of predicted Jacobians and compute for each pair a tentative
homography that we score against all predicted Jacobians.
We now explain how to compute a homography Ĥi,j given
2 predictions (µ̂i, Ĵi) and (µ̂j , Ĵj), i ̸= j, generated by the
deep network fθ.

The homography H : R2 → R2 that maps (metric) road
coordinates to pixels coordinates is defined by its matrix
H ∈ R3×3. In the main paper, we make some reasonable
assumptions and, as a result, the homography is only gov-
erned by 3 free parameters according to Eq. (3) from the
main paper:

H = T
(
Iw
2
,
Ih
2

)
F

Rx(γ)

∣∣∣∣∣∣
0
0
−z

D

=

 f 0 Iw/2
0 f Ih/2
0 0 1

 1 0 0
0 cγ 0
0 −sγ −z


∝

 H11 H12 H13

0 H22 H23

0 H32 1

 . (C.1)

By design, we have H21 = H31 = 0. This essentially
means that there is no camera roll and that the first vanish-
ing point is always at infinity. Moreover, notice that a 2D
translation in the xy road plane has no effect on road dis-
tances and thus H ≡ H.T (u, v) where (u, v) ∈ R2 is a
translation vector and ≡ denotes equivalence:



0.1 0.22 0.5 1.1 2.5

Image size (MPix)

110 130 160 190 230

Video duration (s)

46 78 130 230 390

Number of tracks per video

5 17 56 190 620

Number of vehicle boxes per track

0 20 40 60 80

Vehicle speeds (km/h)

Figure A.1. Detailed statistics for the CCTV dataset. Each histogram represents the distribution of a particular metric in the CCTV dataset.

Figure A.2. Sample video clips with overlaid vehicle tracks featuring intersections and turning roads from the CCTV dataset.

0 2 4 6 8 10
Prin. point offset

(% of image width)

0

2

4

6

Av
g 

Sp
ee

d 
Er

ro
r (

km
/h

)

0 0.05 0.1 0.15
Radial distortion

(k1 from [3])

0

2

4

6

0 0.05 0.1
Max roll angle

(in radian)

0

2

4

6

0 25 50 75 100
All distortions
combined (%)

0

2

4

6
3D-Reproj (Mask IoU) learned+RANSAC

Figure A.3. Speed accuracy of the proposed approaches on the
synthetic dataset under distortions caused by imperfect camera
lens.

H ≡ H.T (u, v)

=

 H11 H12 H13

0 H22 H23

0 H32 1

 1 0 u
0 1 v
0 0 1


=

 H11 H12 H ′
13

0 H22 H ′
23

0 H32 1

 (C.2)

We can thus arbitrarily choose u and v, in particular, we
choose them so that H ′

13 = H ′
23 = 0. As a result, we are

left with an homography matrix H with only 4 non-zero
parameters. Direct calculation shows that the Jacobian of

H(x, y) develops as

JH(x, y) =

[
J11 J12
0 J22

]
=

[
H11

D
1
D2 (H12 − xH11H32)

0 H22

D2

]
(C.3)

where the denominator D = 1+yH32. Given 2 Jacobians of
H denoted J = JH(x, y) and J ′ = JH(x′, y′) at locations
µ = (x, y) and µ′ = (x′, y′), we can jointly solve for H11

and H32 by posing {
J11 = H11

1+yH32

J ′
11 = H11

1+y′H32

(C.4)

and provided that y ̸= y′ we obtain{
H32 =

J′
11−J11

yJ11−y′J′
11

H11 = J11(1 + yH32)
(C.5)

It follows from Eq. (C.3) that H22 = J22(1 + yH11)
2 and

H12 = J12(1 + yH11)
2 + xH11H32.

To summarize, we have shown that given two Jacobians
of an homography, we can recover an equivalent homogra-
phy. Since predicted Jacobians ideally approximate the true
Jacobian, i.e. we have Ĵi ≃ JĤi,j

(µ̂i) and Ĵj ≃ JĤi,j
(µ̂j),



we apply the exact same algorithm to recover Ĥi,j based on
Ĵi, Ĵj , µ̂i = (x̂i, ŷi) and µ̂j = (x̂j , ŷj). In practice, the re-
constructed homography Ĥi,j does not exactly correspond
to the predicted Jacobians due to estimation noise. Never-
theless the robust RANSAC procedure can reasonably deal
with noise and imperfect estimations.

C.2. Test procedure for the learned method

The RANSAC procedure described in Section 3.2 of the
main paper feeds upon a set of Jacobians estimated by the
transformer network fθ. During training, as explained in
Section 3.2.1, we randomly sample 32 vehicle detections
among all detections, extract a representation for each of
them, and input these to the network to get their Jacobians
(see Figure A.4).

During test, however, we use a slightly different proce-
dure. Instead of randomly selecting a subset of detections,
we feed vehicle tracks one by one to the network. Specif-
ically, we only use 10 detections per track (regularly sam-
pled), as it is faster to process without noticeable loss of per-
formance. Figure A.5 illustrates this process. Overall, we
thus accumulate 10 estimated Jacobians per vehicle track1,
and finally run the RANSAC procedure from this accumu-
lated set of Jacobians. We use 1024 iterations of random
pair sampling in the RANSAC procedure.

The reasons for this different test procedure w.r.t. train-
ing are two-fold: (1) this is more stable, since less random-
ness is involved (all detections are considered, not just a
random subset); and (2) on real dataset, it often occurs that
vans or small trucks are labelled as “cars” by Mask-RCNN
and thus not filtered out. Unfortunately, these detections are
significantly larger than any of the 3D car models used for
training. As a result, we observe significantly impacted Ja-
cobians when some of these outlier detections are included
in the input to the network. On the contrary, treating tracks
independently allows to isolate these bad cases. RANSAC
is then able to successfully dismiss these outlier Jacobians,
since they correspond to a small subset of all Jacobians that
is not consistent with the rest.

D. Implementation details for the reprojection-
based method

In Section 4.2 of the main paper, we experiment with
different numbers of 3D models for the reprojection-based
method. As explained in the main paper, the reason for this
experiment is to reduce the computational complexity of the
approach. In fact, the computational cost is linearly depen-
dent on two factors: (i) the number of points per 3D car
models (typically thousands); (ii) the number of 3D models.
In practice, it is intractable to experiment with the original
collection of 3D models.

1Sometimes less, if the track contains fewer than 10 detections.

We therefore perform the following two operations: (i)
we simplify the original 3D meshes and (ii) we cluster 3D
models into a smaller number of models. Note that these
operations could be accomplished in several manners. In
our case, we choose to use the vtk toolbox [4] to compute
the convex hull of each car and to decimate it until 20 points
remain. The resulting simplified 3D meshes are shown in
Figure A.6. Next, we perform k-means clustering on the set
of 3D models using the concatenated masks of each model
on the X, Y, and Z axes as descriptor. We vary the number
of target clusters between K = 1 and 10. For each value
of K, we select the K models that are closest to the mean
code-books output by the k-means algorithm. The selection
procedure tends to select distinct but well-representative car
categories, for instance for K = 2 a sedan and SUV type of
cars are selected.

E. Additional results
E.1. The BrnoCompSpeed dataset

We report additional results for the BrnoCompSpeed
dataset [6]. Figure A.8 shows the cumulative histogram of
relative speed errors, which was omitted from the main pa-
per for the sake of space. Table 1 reports additional compar-
isons with OptInOpt [1], PlaneCalib [2] and FullACC++ [5]
in term of root mean-squared errors (RMSE) on distances
between pairs of points on the road plane with correspond-
ing manual annotations (see [2] for details).

Overall our proposed methods perform slightly inferior
to those other methods, but still largely better than Ful-
lACC [3]. In term of computation time, our learned-method
is at least 2 orders of magnitude faster than any of the other
methods. Again, we find remarkable that our method yields
an RMSE of just 5% while being trained solely from syn-
thetic data using off-the-shelf 3D car models. This is in con-
trast with OptInOpt [1], PlaneCalib [2], and FullACC++ [5]
where in each case, multiple deep networks (for e.g. vehi-
cle detection, vehicle categorization, landmark localization)
and exact 3D CAD models of the cars (exploiting the fact
that most cars in the BrnoCompSpeed dataset, Czech Re-
public, are made by Skoda) with millimeter precise land-
mark localization (see Fig. 5 in the PlaneCalib paper [2])
were used to calibrate the system.

E.2. Qualitative results

We show some results of the calibration output by Ful-
lACC++ [5] and our proposed method Learned-RANSAC
in Fig. A.7 on the CCTV dataset. The final homography
is represented as a square grid overlaid onto the road. For
the sake of visualization, we manually rotate the homogra-
phy in the road coordinate space in order to roughly align
the first vanishing point with the road direction. Indeed our
method always outputs a homography with the first vanish-



Figure A.4. Illustration of the Jacobian prediction on synthetic scenes. Left: synthetic scenes. Middle: binary car masks overlaid with their
embedding representations (i.e. ellipses and normalized motion (arrows)) input to the network. Right: Corresponding predicted Jacobians
Ĵ = [Ĵ1, Ĵ2] displayed as arrows (Ĵ1 is purely horizontal due to Eq. (C.3), Ĵ2 is enlarged 2x for the sake of visualization).

ing point at infinity, which we find quite impractical to visu-
alize. This rotation has no effect on speed estimation. Note
that FullACC++ [5] already performs this alignment by de-
sign of the method.

In many cases, FullACC++ [5] correctly estimates the
first vanishing point but fails for the second one, result-
ing in an erroneous focal and subsequent depth estimates.
This is clearly visible in most scenes of Fig. A.7, where

the grid width is about the same for both methods but the
depth strongly differs. Sometimes, FullACC++ completely
collapses, like in the second and third row of Fig. A.7. In
the first case, failure is due to the vehicle instances being
too small (hence the estimation of the 2nd vanishing point
completely fails). In the second case, it is due to the road
being not straight, which causes a failure in the estimation
of both vanishing points. In contrast, the proposed method



Figure A.5. Per-track detection sampling and Jacobian prediction for the learned method. Left: observed track (10 detections regularly
sampled) and extracted representation rb (ellipse and motion vector) overlaid for each detection. Right: Corresponding predicted Jacobians
Ĵ = [Ĵ1, Ĵ2] displayed as arrows (Ĵ1 is purely horizontal due to Eq. (C.3), Ĵ2 is enlarged 2x for the sake of visualization).

Figure A.6. Simplified 3D meshes (in red) for each of the 10 Car models.



Figure A.7. Visual comparison of the homographies estimated using FullACC++† [5] (left column) and our Learned-RANSAC (right
column). The grid size correspond to squares of 3.5 meters. Notice how depth is poorly estimated using FullACC++†, when it simply does
not completely collapse (2nd and 3rd row) due to low resolution or non-straightness of the road.



10 1 100 101 102

Error [%]

0

20

40

60

80

100
Pr

op
or

tio
n 

of
 v

eh
icl

es
 (%

)

FullACC [16]
3D-Reproj (box IoU)
3D-Reproj (mask IoU)
Learned + Jacobian
NoContext + RANSAC
Learned + RANSAC

Figure A.8. Cumulative histogram of relative errors for the
BrnoCompSpeed dataset [6]. The vertical dashed line indicates
the 3% error threshold.

Abs error (km/h) Rel error (%) RMSE Time (s)
avg median avg median (%) avg

3D-reproj (box IoU) 5.70 2.85 7.04 3.61 8.27 1.49 K
3D-reproj (mask IoU) 2.84 2.03 3.46 2.58 6.87 2.84 K

Learned+Jacobian 9.21 6.47 11.51 8.12 - 15.9
NoContext+RANSAC 3.01 2.59 3.69 3.31 5.81 2.5

Learned+RANSAC 2.15 1.60 2.65 2.07 5.05 2.9
FullACC [3] 8.59 8.45 10.89 11.41 13.9 1.5 K

FullACC++ [5]* 1.10 0.97 1.39 1.22 - -
FullACC++† [5] 2.39 1.72 3.03 2.17 3.46 2.1 K

OptInOpt [1] - - - - 3.01 325 K
PlaneCalib [2] - - - - 3.65 266

Table 1. Results for the BrnoCompSpeed dataset (split A). Note
that FullACC++ [5] results are not strictly comparable as they
were obtained on a subset of 9/18 videos, the other 9 videos being
used to train their method. FullACC++† is our re-implementation
using code snippets shared by the authors.

naturally handles non-straight roads and small instances by
design.

References
[1] V. Bartl and A. Herout. OptInOpt: Dual Optimization

for Automatic Camera Calibration by Multi-Target Ob-
servations. In 2019 16th IEEE International Confer-
ence on Advanced Video and Signal Based Surveillance
(AVSS), pages 1–8, Sept. 2019. ISSN: 2643-6213. 3, 7

[2] Vojtěch Bartl, Roman Juranek, Jakub Špaňhel, and
Adam Herout. PlaneCalib: Automatic Camera Cal-
ibration by Multiple Observations of Rigid Objects
on Plane. In 2020 Digital Image Computing: Tech-
niques and Applications (DICTA), pages 1–8, Mel-
bourne, Australia, Nov. 2020. IEEE. 1, 3, 7

[3] Markéta Dubská, Adam Herout, Roman Juranek, and
Jakub Sochor. Fully Automatic Roadside Camera Cal-
ibration for Traffic Surveillance. IEEE Transactions on
Intelligent Transportation Systems, 16(3):1162–1171,
June 2015. 1, 3, 7

[4] Will Schroeder, Ken Martin, and Bill Lorensen. The
Visualization Toolkit. 2006. 3

[5] Jakub Sochor, Roman Juránek, and Adam Herout.
Traffic Surveillance Camera Calibration by 3D Model

Bounding Box Alignment for Accurate Vehicle Speed
Measurement. Computer Vision and Image Under-
standing, 161:87–98, Aug. 2017. arXiv: 1702.06451.
1, 3, 4, 6, 7

[6] Jakub Sochor, Roman Juránek, Jakub Špaňhel, Lukáš
Maršı́k, Adam Široký, Adam Herout, and Pavel
Zemčı́k. Comprehensive Data Set for Automatic
Single Camera Visual Speed Measurement. IEEE
Transactions on Intelligent Transportation Systems,
20(5):1633–1643, May 2019. 3, 7



Figure A.9. Snapshots of all clips from the CCTV dataset.


