
Efficient Learned Flexible-Rate Video Coding: Supplementary Material

A. Codelayer Details

The general strategy is to use a convolutional neural net-
work to transform some collection of features into a quan-
tized codelayer, and then to use entropy coding to losslessly
encode those features. Another neural network is then used
to decode the codelayer and produce tensors of interest. An
entropy coder can efficiently compress a tensor if a well-
calibrated probability for each possible value of that tensor
is provided. For the I-frame, the input is the image to be
compressed. For the P-frame, the input includes other fea-
tures such as the previous flow and previous reconstruction.
The architecture uses side information (q1) to encode the
main codelayer (q0) more efficiently.

In equations, we have q0 = Q(E0(inputs)), q1 =
Q(E1(q0)), µ0, σ0 = D1(q1), and outputs = D0(q0)
where E0,E1,D1,D0 are convolutional neural networks
and Q(x) = Qwround(x/(Qw)) is a point-wise quantiza-
tion function with quantization width Qw. q0 and q1 are
tensors of the shape H/si,W/si, C where H,W are the di-
mensions of the frame, si is an integer stride, and C is a
number of channels. µ0,σ0 are tensors of the same shape
as q0. They assign a mean and standard deviation for each
element of the codelayer.

In order to use entropy coding to losslessly encode the
discrete values, q ∈ {0,±Qw,±2Qw, . . .}, in the quantized
codelayers q0 and q1, a probability for each possible dis-
crete value needs to be assigned. A Gaussian with support
on the real line can be used to provide probabilities for a dis-
crete distribution by computing the area under the Gaussian
within ±1/2 of the quantization width: p(q|µ, σ,Qw) =∫ q+Qw/2

q−Qw/2
N (x|µ, σ) dx = Φ(q−µ+Qw/2

σ)− Φ(q−µ−Qw/2
σ)

where Φ is the CDF of the standard normal distribution.
The codelength can be computed and included as part

of the differentiable loss by computing the sum over all
elements in the codelayers

∑
i,j − log2 p(qi,j |µi, σi, Qw)

where j sums over the height, width, and channel axes of
the codelayer tensor. This interpretation of the probabilities
for each discrete quantized value results in the same equa-
tions as Balle et al., but is simpler than their interpretation
which involves convolving an initial density model with a
uniform distribution.

Since the quantized tensors are of a shape a H ′ by W ′

by C, an estimate of the codelength as a function of space
can be computed by summing the log probabilities over the
channel axis, using nearest neighbor upsampling to align

the codelength maps which have different strides.
A Gaussian range encoder (GRE) is used to losslessly

encode the quantized codelayer q0 and subnet codelayer
q1. During encoding: b1 = GRE(q1|µ = 0,σ = σ1)
and b0 = GRE(q0|µ = µ0,σ = σ0). During decod-
ing, a Gaussian range decoder (GRD) is used to decode
the encoded bits: q1 = GRD(b1|µ = 0,σ = σ1) and
q0 = GRD(b0|µ = µ0,σ = σ0). σ1 is a parameter of the
model and gives a standard deviation for each channel of
q1. The Gaussian range coder uses the generalized entropy
coder: ANS (specifically the rANS variant [1]). The in-
put distribution to the ANS entropy coder is the discretized
Gaussian distribution with the specified mean and std.

Since the Gaussian probability model has a diagonal co-
variance matrix, the elements of the codelayer can be en-
coded in parallel. Autoregressive probability models, which
are common in ML-based compression, are not used be-
cause they result in prohibitively slow decoding in their cur-
rent form.

B. Backbone Architecture

Full layer specification of our model along with back-
bone configurations and DM block parameters can be found
in Figure 1.

C. Channel Normalization

In a number of locations of the network, tensors with
different average magnitudes are concatenated across the
channel axis and fed as input to a subsequent neural net-
work. For instance, the flow is in units of pixels and may be
on the order of 10. In contrast, the residual is normalized to
roughly be between −1 and 1. In standard neural networks,
normalization is handled by batch normalization.

However, one issue with batchnorm is that it effectively
injects noise into the network, as the output for a particular
example depends on the other randomly sampled elements
in the batch. Adding noise during training in this way is not
ideal for the problem of compression. Instead, we compute
channel-wise moving averages of the means and variances
of the input to the layer. Then those features are normal-
ized using the computed means and variances. In order to
get around the issue of the mean and variance drifting to
infinity, we freeze the moving averages after 2000 training
steps. In practice, failing to normalize the inputs in one way
or another causes the network to either blow up or to under-

1

Flow predictor block

Residue blockFlow block

Target

S2D-4

Previous state

Level map

Concatenate

 Channel norm

DM-256

S2D-2

DM-256

S2D-2

DM-256

Conv 96 1x1

Code

DM-64-Deconv

Deconv 64 3x3 S2

DM-64-Deconv

Deconv 64 3x3 S2

DM-64-Deconv

Predictor mask Flow delta

Deconv 64 3x3

Deconv 16 1x1

Deconv 64 3x3

Deconv 32 1x1

D2S-4 D2S-4

Residue

S2D-4

Level map

Concatenate

 Channel norm

DM-256

S2D-2

DM-256

S2D-2

DM-256

Conv 96 1x1

Code

DM-128-Deconv

Deconv 128 3x3 S2

DM-128-Deconv

Deconv 128 3x3 S2

DM-128-Deconv

Residue
reconstruction

Deconv 64 3x3

Deconv 48 1x1

D2S-4

Flow state
Output state

Final flow

Scale-space
flow

Previous
reconstruction

Compensated
frame

Output frame

Previous
reconstruction

Penultimate
reconstruction

Previous flow

Level map

Concatenate

S2D-4

DM-128DM-128

S2D-2

D2S-2

Conv 3 1x1

Predicted flow Scale-space
flow

Previous
reconstruction

S2D-4

Concatenate

 Channel norm

Concatenate

 Channel norm

Figure 1. Full layer specification of our model along with backbone configurations and DM block parameters.

perform significantly.

D. Loss Modulator

The loss modulator multiplies the reconstruction loss for
a given P-frame and level by a factor µ in order to give extra
weight to modes that are under-performing during training.

Since the training uses the MSE, the difference in PSNR
criterion is converted into a multiplicative factor based
on the MSE using the following relationship: PSNR1 >
PSNR2 − δ ⇐⇒ MSE1 < MSE2 · f(δ) where f(δ) =
10δ/10. Empirically, we used f(δ) = 1.5 =⇒ δ = 1.76.

The threshold for the loss modulator was chosen by training
the model for 30 epochs for a few different values of the δ
between the PSNR of the I- and P-frames. µ is initialized to
1 for all frames and levels, but isn’t particularly sensitive to
the initialization. µ is clipped to be in the range [1.0, 10.0]
to improve training stability.

This method can also be seen as annealing the regulariza-
tion weight to allow for larger bitrates for under-performing
frames and as the performance improves, the bitrate is more
aggressively regularized. We hypothesize that this method
is useful because if the regularization is too strong, the

2

model can struggle to train. In equations, the loss can be
written as:

∑
l,t

µ
(l)
t ·

[
L
(l)
rec,t +

λ
(l)
reg

µ
(l)
t

R
(l)
t

]
(1)

Thus the effective regularization weight
λ(l)

reg

µ
(l)
t

is smaller

when µ is increased.
In practice, the µ

(l)
t as a function of training iteration

starts at 10, stays there, and then more or less smoothly tran-
sitions to 1. The lower levels (small l) and earlier frames
(small t) train more efficiently so the crossover time is ear-
lier for those frames and levels. This procedure may also
mitigate error accumulation over time when unrolling the
model by placing more emphasis on the later frames.

E. Level interpolation

Suppose that one wants to embed L levels in a Le-
dimensional space in a way that smoothly interpolates be-
tween levels and reduces to a one-hot representation when
Le = L. The embedding of a level l ∈ {0, 1, . . . L − 1} is
computed as follows:

sl =
l(Le − 1)

L− 1
ul = ⌊sl⌋, vl = ul + 1 (2)

le = (1− {sl}) · onehot(ul|Le) + {sl} · onehot(vl|Le)
(3)

where {s} denotes the fractional part of s and onehot(a|b)
gives the b-dimensional one-hot representation of the in-
teger a. If a < 0 or a ≥ b, it returns the zero vec-
tor. It can be verified that if Le = L, this reduces back
to the original one-hot representation. When L > Le,

0.05 0.10 0.15 0.20 0.25
BPP

32

33

34

35

36

37

38

PS
NR

 R
GB

Interpolated
Original

Figure 2. R-D curves of the baseline and level-interpolated model
match on the UVG dataset. The baseline model has 8 levels and
the interpolated model supports 32 levels.

this method smoothly interpolates between one-hot vectors.
This embedding allows us to arbitrarily increase the num-
ber of levels without additional training (Figure 2). The
level-interpolated model is used in the rate control figures
in the main text. As an example, if 5 levels are embed-
ded in a 3 dimensional space, the resulting vectors are
(1, 0, 0), (0.5, 0.5, 0), (0, 1, 0), (0, 0.5, 0.5), (0, 0, 1).

In order to derive these equations, consider a number line
marked at 0, 1, . . . Le−1. Each of these marks corresponds
to a one-hot vector in the Le-dimensional space. We want
to evenly space L values on this number line where the min-
imum value is zero and maximum value is Le − 1. It can
be seen that sl produces evenly spaced points on this line.
The nearest one-hot vectors corresponding to sl are marked
at ul and vl. The distance from sl to u is {s} and the dis-
tance from sl to v is 1−{s}. The final embedding vector is
computed by weighting the nearby Le-dimensional one-hot
vectors by the distance of sl to ul and vl.

F. Dataset

The Vimeo90k dataset [3] consists of 91,701 7-frame
sequences with fixed resolution 448 × 256. For finetuning
with a larger crop size, we generate a Vimeo90k-like
dataset, which consists of 100k 32-frame clips of resolution
352× 352. The clips were generated from 2363 full length
original videos which were used to generate the Vimeo90k
dataset (http://data.csail.mit.edu/tofu/
dataset/original_video_list.txt). The origi-
nal videos were pre-processed into distinct segments with
a basic threshold-based scene-cut detector. The 32-frame
clips were then extracted from the segments at a random
downscale factors to ensure a wide range of motion in the
dataset.

G. Results by Video Type

As mentioned in the main paper, we found that our codec
suffers on non-photorealistic videos. In Figure 4 we plot the
performance of ELF on the four non-photorealistic videos
in the MCL-JCV dataset (video IDs 18, 20, 24, 25 within
the set), and in Figure 3 plot on all other videos.

H. Results by Loss Type

Figures 5, 6, and 7 compare and contrast the reconstruc-
tions generated by the models optimized for different dis-
tortion losses.

I. Commands Used for Standards-based Video
Compression

H.264 We use the following command to encode all
H.264 videos in the paper:

ffmpeg -i [SRC] \
-preset medium \
-codec:v libx264 \
-crf [RATE] \
-x264-params bframes=0 [DST]

3

http://data.csail.mit.edu/tofu/dataset/original_video_list.txt
http://data.csail.mit.edu/tofu/dataset/original_video_list.txt

0.0 0.1 0.2 0.3 0.4 0.5
BPP

32
33
34
35
36
37
38
39
40
41

PS
NR

 R
GB

ELF (Ours)
AV1
H.264
H.265

Figure 3. ELF R-D curves on all natural videos in the MCL-JCV
dataset.

0.0 0.1 0.2 0.3 0.4 0.5
BPP

30

32

34

36

38

40

42

44

PS
NR

 R
GB

ELF (Ours)
AV1
H.264
H.265

Figure 4. ELF R-D curves on the four non-photorealistic videos in
the MCL-JCV dataset.

H.265 We use the following command to encode all
H.265 videos in the paper:

ffmpeg -i [SRC] \
-preset medium \
-codec:v libx265 \
-crf [RATE] \
-x265-params bframes=0 [DST]

AV1 We use the SVT-AV1 Encoder [2] (version
v0.8.5-72-gd210088) for comparison. Encoding using
only I– and P-frame types is disabled by default in
the SVT-AV1 encoder, but can be enabled as men-
tioned in the github issue https://github.com/
AOMediaCodec/SVT-AV1/issues/973. The encod-
ing command used is:

SvtAv1EncApp -i [SRC] \

PSNR Loss | BPP: 0.18
Reconstruction

MS-SSIM Loss | BPP: 0.16
Reconstruction

MS-SSIM Loss | BPP: 0.21
Reconstruction

PSNR Loss | BPP: 0.18
Target - Reconstruction

MS-SSIM Loss | BPP: 0.16
Target - Reconstruction

MS-SSIM Loss | BPP: 0.21
Target - Reconstruction

Figure 5. Qualitative Differences Between PSNR and MS-SSIM-
optimized models at Low Bitrates. Reconstructions and recon-
struction error of the first frame of ntia spectrum1 from the CDVL
SD dataset. The first column shows a PSNR model encoded using
level = 1. The second and third columns show the MS-SSIM
model with level = 1, 2. The PSNR model has less detail in
the textures of the face, but is more accurate in reconstructing the
edges of the text in the top left of the frame. The residual is boosted
by a factor of 3 for visualization purposes.

PSNR Loss | BPP: 0.008
Reconstruction

VMAF Loss | BPP: 0.007
Reconstruction

VMAF Loss | BPP: 0.009
Reconstruction

PSNR Loss | BPP: 0.008
Target - Reconstruction

VMAF Loss | BPP: 0.007
Target - Reconstruction

VMAF Loss | BPP: 0.009
Target - Reconstruction

Figure 6. Visual Comparison between PSNR and VMAF-
optimized models at Low Bitrates. Reconstructions and recon-
struction error of the fourth frame of Jockey from the UVG dataset.
The first column shows the YCbCr PSNR model encoded using
level = 1. The second and third columns show the VMAF-
finetuned model encoded using level = 1, 2. The reconstructions
look roughly the same despite the fact that the VMAF-finetuned
model performs significantly better on the VMAF metric.

-b [DST] \
--rc 0 -q [RATE] \
--hierarchical-levels 0 \
--lookahead 0

J. Model Consolidation

We start with two separate R-D curves, one for each
model. Given the selection of regularization weights, the
two curves cover different BPP ranges, but still overlap.

These two R-D curves are consolidated together into a
single one. This is simply done by computing the upper
convex hull of all R-D points, and keeping the points which
are used to construct this hull.

4

https://github.com/AOMediaCodec/SVT-AV1/issues/973
https://github.com/AOMediaCodec/SVT-AV1/issues/973

PSNR RGB | BPP: 0.033
Reconstruction

PSNR RGB | BPP: 0.033
Target - Reconstruction

MS-SSIM RGB | BPP: 0.035
Reconstruction

MS-SSIM RGB | BPP: 0.035
Target - Reconstruction

PSNR YCbCr | BPP: 0.032
Reconstruction

PSNR YCbCr | BPP: 0.032
Target - Reconstruction

VMAF YCbCr | BPP: 0.032
Reconstruction

VMAF YCbCr | BPP: 0.032
Target - Reconstruction

Figure 7. Side-by-Side Comparisons of All Models at Low Bi-
trates. Reconstructions and reconstruction error of the 11th frame
of video 22 from the MCL JCV dataset (encoded using level = 1).
Note that MS-SSIM model has larger error in the windows in the
middle of the frame and the YCbCr models have a larger amount
of color distortion.

References
[1] Jarek Duda. Asymmetric numeral systems: entropy coding

combining speed of huffman coding with compression rate of
arithmetic coding. arXiv preprint arXiv:1311.2540, 2013. 1

[2] Github. Scalable video technology for av1 (svt-av1 encoder
and decoder). 4

[3] Tianfan Xue, Baian Chen, Jiajun Wu, Donglai Wei, and
William T Freeman. Video enhancement with task-oriented
flow. International Journal of Computer Vision (IJCV),
127(8):1106–1125, 2019. 3

5

