Supplementary Material: Long-Term Temporally Consistent Unpaired Video
Translation from Simulated Surgical 3D Data

Dominik Rivoir!?, Micha Pfeiffer!, Reuben Docea!, Fiona Kolbinger!*,
Carina Riediger®, Jiirgen Weitz>?, Stefanie Speidel'-?

INCT/UCC Dresden, Germany, >CeTI, TU Dresden, *University Hospital Dresden

{dominik.rivoir, micha.pfeiffer, reuben.docea, stefanie.speidel}@nctfdresden.de

{fiona.kolbinger, carina.riediger, Jjuergen.weitz}@uniklinikum-dresden.de

1. Implementation details
1.1. Neural Texture & Projection Mechanism

Here, we go into more detail on the projection mecha-
nism between texture and pixel space and from which we
obtain the image-sized feature map a!*®:

tex

a;

= project(tex,view;) (1)

In the following, we describe how the projection works for
a single pixel (z,y) of a given view;.

First, a ray is cast through the pixel to the sur-
face of the 3D scene. We obtain a surface coor-
dinate s € R3 and its corresponding object o €
{"liver’, ’gallbladder’, ’ligament’, ’abdominal wall’, *fat’ }.

ray(view;, z,y) = 8,0)

From the surface point s, we find the corresponding texel
coordinates for each of the three texture planes which face
the surface point (i.e. where the dot-product of normals is
positive). Assuming surface and texture normals are never
exactly orthogonal in practice, tri(s) always returns three
sets of texture plane coordinates.

tri(s) = {projy(s)|p € {1..6} A (nl - n,) > 0}

(3)
= {(xpuypl)? (33,,2, Yps) (mpg, yps)}

where z,,, yp, are the texel coordinates of s projected onto
texture plane p; and transformed into texel space.

To obtain the final, projected features in pixel space,
we compute a weighted average of the texture features
tex(o, p, xp, yp) from the three planes.

tri(s)
a:::ea: [ma y] = Z wtri(sap) : tex[oapv Tp, yp] (4)

ZpsYp

Weri(s,p) = (nl - nyp)? 5

Features are weighted according to the squared dot-product
of surface and texture normal, i.e. the texture plane which
faces the surface point most, contributes most to the final
feature vector. Note that |ns|| = 1 and n, are orthogo-
nal one-hot or negative one-hot vectors. Hence, the sum of
weights is always n2 , +n?, +n? = ||n||* = 1.

To obtain texture features tex|o, p, T,, Yp| from continu-
ous coordinates x,, y,, we use bilinear interpolation:

texlo, p, xp, yp)

= (1-Az) (1-Ay) tex[o,p, |zp], [yp]]
+ (1-Ax) Ay tex [o,p, |zp], fyp]] (6)
+ Az (1-Ay) tex|o,p, [zp], yp]]
+ Az Ay tex [o,p, [zp], [yp]]

where Az =z, — |2, and Ay =y, — |yp .

1.2. Warping

To enforce the view-consistency loss L,., we have to
warp the translated image Z;j of view; into the pixel space
of view;. To this end, we define the warping operator w; (-)
to obtain the warped image

w; (by).)

To map pixel coordinates x, y from view; to view;, we first
use the ray function ray(view;, x,y) from view, to obtain
a 3D surface point s = (s, Sy, 5). Using the view;’s in-
trinsic and extrinsic camera parameters, s is projected back
into view; and we obtain the corresponding pixel coordi-
nates z;, y;.

vi| =CioRT- ||, ®)
1 1

where C; € R3*3 is view;’s intrinsic matrix with focal
lengths f.,, f, and principal point (ug, vo) and RT; € R3*4
is its extrinsic matrix with rotational and translational pa-
rameters {r_},{t. }. All parameters can be extracted from
the simulated scene.

fu 0 ug
Ci = 0 fU Vo (9)
0 0 1

oo Tor To2 lo
RT; = |rio r1 ri2 t (10)

roo T21 T2 Q2
Using this correspondence between pixel coordinates of

both views, RGB values can now be mapped into the
warped image:

N b x,y] if —occl; (s, s;
w;(bj) [z, yi] = ile.v) (s 1) (11)
0, else.
where s, - = ray(view;, z,y) is the 3D surface point we
want to warp and s;, - = ray(view;, z;,y;) is the surface

point we obtain if a ray is cast into the surface from the
warped location in the target view . Note that that we do
not map surface points from view; if they are occluded in
view;. To this end, we define the boolean occlusion func-
tion occl;(s1, $2):

occli(s1,82) = depth;(s1) > (depth;(s2) +¢€), (12)
where depth;(s) is the depth of a surface point s from
view;. To account for inaccuracies, we say it is an occlu-
sion if the former depth is larger than the latter by a margin
of e = 1Imm in the blender scene.

1.3. Network architectures

We repurpose MUNIT’s [2] network architectures for
encoders F 4, Ep, decoders G 4,Gp and discriminators
D 4, D, but remove styles from the encoders and decoders.
AdalN layers are replaced by instance normalization layers.

1.4. Translation

In each training iteration, two simulated views and one
real image are sampled:

ate:r at‘ex
(}"ef) Tef € A
a; a]

Equations 14 to 18 show all translations and reconstructions
performed during each training step. Note that the second
view j from domain A is only translated to domain B and
not used for reconstructions or cycles.

be B (13)

Domain A:

ai®\ Ba @ e
aref > c” > b _> rec —> r7e}{ (14)
i

i,cyc
tem o aﬁe?
(“;ef> ELLEN (iﬁ;ﬂ) (15)
a; ai,'r‘ec
ate®)
(ﬁef) Gooba, p. (16)
a;
Domain B:
p B, b Ga ate®\ B Gs, } 17
B G aref —= Cree — beye 17
pLeley, (18)
1.5. Losses

Generator/texture update: Encoders F 4, E'p, decoders
G 4, Gp and neural textures tex are learned by minimizing
Equation 19.

Ltotal = Ltranslation + /\ch (19)

= Lgav + Lcyc + Lyec + Le + Lssima (20)

Ltranslation

t
MU‘PA a)lﬂbg *W @1

(
PR(IE
(v

L’I‘EC - AT‘CC(

te:p
3§“C> + 16— bcyCHl) (22)

i,cyc 1

ref

’L Tec

tea:

r ef _

tez _ tel
z rec

ref

+ |6 — brec||1> (23)

1

Le = Mo(||c™ — =) @4

Lssim A?SlmMS—SSIM(gmy(a’"efLgray(l;)) 25)
+\ba. MS-SSIM(gray(b), gray(a Tef))

sstm

1 Mass, i)xy ((;)=y
Lye = > cos™! <wy> , (26)
M50 () 11657 [l (bs) =l

angle loss
(proposed)

L1 loss

angle loss
(proposed)

L1 loss

(d)

(€)

(b) (c)

-

Figure 1. More examples of our proposed angle-based loss vs. an L1 loss. While the angle-based loss allows close and central parts of the
image to be brightened, the L1 loss leads to either uniform brightness ((a)-(d)) or unrealistic lighting conditions ((e) and (f)).

We use Aeye = 10, Apee = 10, Ao = 1, A2

ssim 5,
Aba. = 3. For the Multi-Scale Structural Similarity (MS-
SSIM) loss, we use Jorge Pessoa’s implementation' with
5 scales and a window size of 11 x 11. Similarity is
only enforced on the brightness (gray values) of images.
The weight for the view-consistency loss is initialized with

A = 0 and set to 20 after 10k iteration.

Discriminator update: Discriminator networks D 4, Dp
are learned by minimizing:

atew
el (57)

dtea:
[P (Ger) -0

1.6. Training

2+||DB(b)*1||§
; S, @
+[pote o]

We train our model for 500,000 iterations and use the
Adam optimizer with initial learning rates of 10~* for net-
work parameters and 10~2 for neural textures. Learning

https://github.com/jorge-pessoa/pytorch-msssim

rates are halved every 100,000 iterations. For all experi-
ments including ablations and baselines, we use a batch size
of 1. Note, however, that the definition of a batch varies
across methods. In our method we e.g. sample one real and
two simulated views per batch. In SSIM-MUNIT only one
image from each domain is sampled per batch, while for
ReCycle or SSIM-Recycle 3 images for each domain are
sampled.

1.7. Baselines

SSIM-MUNIT: This model is trained for 370k iterations
as in the original paper. For realism and label preservation
experiments, we translate each training image once with
randomly drawn styles and once with a style extracted from
randomly drawn images. Test video sequences are trans-
lated with a randomly drawn but fixed style to guarantee a
fair comparison with respect to temporal consistency.

ReCycle & SSIM-ReCycle: Both models are trained for
the suggested 40 epochs. Longer training times lead to de-
grading performance. Triplets of simulated images are ob-
tained through random, linear trajectories comparable to the
motion in real sequences.

https://github.com/jorge-pessoa/pytorch-msssim

Failure cases

Figure 2. Common failure cases include the rendering of fat or stomach texture on areas which are supposed to be liver (in the simulated

scene).

OF-UNIT: We train for 1 Mio. iterations due to the
stronger correlation between subsequent samples. We re-
place the view-consistency loss with an L1 loss and increase
the weight A to 50 since it gave better results. Intuitively,
the angle loss is not required here since the views on which
the loss is applied are consecutive frames and exhibit only
minor lighting changes. Synthetic sequences are obtained
from the triplets used for ReCycle.

2. Additional Results

Figure 1 shows more translated views comparing our
proposed angle-based view-consistency loss to a naive L1
loss. Our proposed loss allows for view-dependent effects
while an L1 loss actively discourages them.

3. Limitations

Realism of 3D Shapes The largest limitation of our cur-
rent method is the lacking realism of the simulated 3D
meshes. While liver meshes are obtained from real CT
scans, all other organs were designed manually. Especially
liver ligaments are difficult to model realistically. However,
even the liver meshes often differ from realistic settings
since intra-operative deformations (e.g. by inflating the ab-
dominal cavity) are different from ones observed during a
CT scan. We manually deformed the liver meshes to resem-
ble intra-operative shapes.

Freedom of Neural Textures Figure 2 shows failure
cases of our method. Sometimes the model misinterprets
objects in the simulated scene and e.g. renders fat or stom-
ach textures on liver surfaces. Compared to previous work,
this seems to happen slightly more frequently as indicated
by our liver-segmentation experiments. We believe that
neural textures give the model more freedom to interpret

the simulated scene. Hence, enabling a higher level of de-
tail and consistency comes with the trade-off of more mis-
interpretations.

Variability We propose a deterministic, style-less model
since we believe that current state of the art for style-
dependent translation (AdalN [1]) is unsuitable and not the-
oretically sound in the video setting. To demonstrate this,
we implement a variant of our model with AdalN styles as
used in MUNIT [2] or SSIM-MUNIT [3].

Firstly, styles operate at image level and do not intro-
duce variability at texture level; e.g. locations of vessels do
not vary, but only their appearance (Fig. 3). Hence, the vari-
ability is mostly limited to color changes but changing tex-
tures would be highly useful for creating diverse training
and evaluation environments.

Secondly, AdaIN styles directly control lower-order
statistics (mean, variance) of feature distributions and
thereby enforce how much fat, blood, etc. are rendered in a
frame?. So, using a single AdalN style for the whole video
enforces a static feature distribution (i.e. static amount of
fat, etc.) across frames although the field of view changes
over time. Figure 4 shows how e.g. a fatty style image re-
sults in translated views with a lot of yellow color regardless
of its content. Thus, even if the current view contains only
liver, AdalN styles force the model to render fat. In the im-
age setting, this problem could possibly be circumvented by
selecting style images with similar content. In the video set-
ting, however, finding a style that matches all video frames
cannot be guaranteed and using multiple styles induces tem-
poral inconsistencies.

For both problems, we believe that introducing styles at
texture level would provide a possible solution and that this
would be a useful direction for future research.

2Fig. 3 of SSIM-MUNIT’s supplementary http://opencas.
dkfz.de/image2image/supplementary.pdf

http://opencas.dkfz.de/image2image/supplementary.pdf
http://opencas.dkfz.de/image2image/supplementary.pdf

Channel #3 of afe*

Input

Translation

Figure 3. Styles operate only at image-level but details such as vessels are stored in the neural textures (see Channel #3 of a‘*®). Hence,
the resulting variability is mostly restricted to color changes. It can be seen that vessels have identical locations in all samples. We believe
research towards styles at texture-level would be a useful direction for future work.

Input

Translation

Style Image

(©)

Figure 4. In the video setting, AdalN enforces static feature distributions even though the field of view changes over time. We translate two
views of the same scene once with a style image of similar content (a and d) and once with dissimilar content (b and c). We observe that
using a style image with a lot of fat forces the model to render yellow color in a view that contains mostly liver (b) but produces reasonable
results if the content matches (a). We did, however, observe that this effects seems to be most prominent with *fatty” style images and less
drastic in some other cases. Example c shows that the model is able to draw stomach texture on the lower right corner although there seems
to be no such texture in the style image. Possibly, the similar hue of liver and stomach allow for this.

References [2] Xun Huang, Ming-Yu Liu, Serge Belongie, and Jan Kautz.

. . . Multimodal unsupervised image-to-image translation. In Pro-
(1] Xun Huang' and Serge Belongle. Arblt.rary' style transfer in ceedings of the European conference on computer vision
real-time with adaptive instance normalization. In Proceed- (ECCV), pages 172-189, 2018. 2, 4

ings of the IEEE International Conference on Computer Vi-
sion, pages 1501-1510, 2017. 4 [3] Micha Pfeiffer, Isabel Funke, Maria R Robu, Sebastian Bo-

denstedt, Leon Strenger, Sandy Engelhardt, Tobias Rof,
Matthew J Clarkson, Kurinchi Gurusamy, Brian R Davidson,
et al. Generating large labeled data sets for laparoscopic im-
age processing tasks using unpaired image-to-image transla-
tion. In International Conference on Medical Image Com-
puting and Computer-Assisted Intervention, pages 119-127.
Springer, 2019. 4

