
Hypersim: A Photorealistic Synthetic Dataset for
Holistic Indoor Scene Understanding

Supplementary Material

Mike Roberts Jason Ramapuram Anurag Ranjan Atulit Kumar
Miguel Angel Bautista Nathan Paczan Russ Webb Joshua M. Susskind

Apple
http://github.com/apple/ml-hypersim

1. Computational Pipeline Details
Estimating Free Space For each of our scenes, we com-
pute an occupancy volume of the scene’s free space using
the following space carving algorithm. We begin by raster-
izing the scene’s triangle mesh into our occupancy volume,
where we mark every covered voxel as occupied. Next, we
assume that our artist-defined camera positions are in free
space, and we shoot rays in a dense set of directions starting
from these camera positions. We raycast against our mesh
and the current occupancy volume to obtain the length of
each ray before it intersects our scene geometry. After ob-
taining the length of each ray, we mark every interior voxel
along each ray as free in our occupancy volume. Next, we
use our updated occupancy volume to sample new positions
in the free space uniformly at random, and we repeat our
space carving algorithm at these new positions. We repeat
this algorithm for several iterations to obtain a conserva-
tive estimate of the free space that can be reached from our
initial set of artist-defined camera poses. We store our occu-
pancy volume efficiently in an OctoMap data structure [4].

Generating Camera Trajectories We generate camera
trajectories according to the following sampling procedure.
Suppose c0, c1, . . . , cK is the sequence of camera poses
we want to generate. We set c0 to be an artist-defined cam-
era pose, and we generate subsequent camera poses by re-
peatedly sampling from the following conditional probabil-
ity distribution,

p(ci+1|ci) ∝ v(ci+1) subject to ci+1 ∈ N(c0, ci) (1)

where ci+1 is the unknown next camera pose we would
like to sample; ci is the known current camera pose;
v(ci+1) is the view saliency of ci+1; and the constraint
ci+1 ∈ N(c0, ci) enforces that ci+1 is in a small lo-
cal neighborhood around ci, a larger local neighborhood
around c0, is upright, and is in free space. During each
iteration of this sampling procedure, we generate a discrete

set of candidate poses in N(c0, ci) uniformly at random,
compute the un-normalized probability of each candidate
by raycasting against our scene geometry, and sample our
next camera pose from this discrete set of candidates based
on their probabilities.

In our implementation, we use a two-body parameteriza-
tion of camera pose, similar to [8], where each camera pose
ci consists of a look-from position pi, a look-at position ti,
and a roll angle φi. Using this notation, we can express the
constraint ci+1 ∈ N(c0, ci) more precisely. In order for the
camera pose ci+1 to be in the set N(c0, ci), the following
conditions must be satisfied,

• Upright: φi+1 must be in the range [−5, 5] degrees.

• Obstacle-free: pi+1 and ti+1 must be in free space.

• Visible: pi+1 must be visible from pi, and ti+1 must
be visible from ti.

• Close to the current camera pose:

−bcurrent ≤ pi+1 − pi ≤ bcurrent

−bcurrent ≤ ti+1 − ti ≤ bcurrent
(2)

• Close to the initial camera pose:

−binitial ≤ pi+1 − p0 ≤ binitial

−bintiial ≤ ti+1 − t0 ≤ binitial
(3)

where bcurrent = [1.5, 1.5, 0.25]T specifies the size in me-
ters of a box-shaped region around the current camera pose;
binitial = [∞,∞, 0.25]T specifies a similar box-shaped re-
gion around the initial camera pose; and the z-axis points
up. We obtain the initial look-at position t0 by raycasting
against our scene geometry, and we set α = 1 and β = 2 in
our view saliency model (see equation 1 in the main paper),
indicating that our model is quadratically more sensitive to
empty pixels than triangle counts.
Modifying V-Ray Scenes and Post-Processing After
generating camera trajectories, our next step is to add the
trajectories to our V-Ray scene description file. We perform

http://github.com/apple/ml-hypersim


this modification programmatically using the V-Ray Python
API. As we are modifying our V-Ray scene, we configure it
to output all the ground truth layers we need for our dataset,
and we configure various scene parameters to ensure con-
sistent rendering quality. Our procedure for modifying the
V-Ray scene guarantees that each rendered image satisfies
the following equation,

I = AS +R (4)

where I is the final color image; A is the diffuse reflectance
image; S is the diffuse illumination image; R is the non-
diffuse residual image; and we add and multiply indepen-
dently per-pixel and per-color-channel.

At this step in our pipeline, we do not yet have a seman-
tically labeled triangle mesh, so V-Ray cannot output se-
mantic instance images (Figure 1d in the main paper) or se-
mantic label images (Figure 1e in the main paper) directly.
Instead, we configure V-Ray to output object part images,
i.e., images where each object part in the scene has a unique
ID. In a final post-processing step, we use the output of our
mesh annotation tool to convert these object part images
into semantic instance images and semantic label images.
This strategy enables us to render images while annotating
our scenes in parallel, and also enables us to re-annotate our
scenes (e.g., with a different set of labels) without needing
to re-render images.

Cloud Rendering After modifying our V-Ray scene, our
next step is to render it using a cloud rendering system that
we built on top of publicly available cloud computing ser-
vices. In particular, we use a service that offers a pay-per-
minute-per-core licensing model for V-Ray, which is well-
suited for bursty rendering workloads (e.g., generating our
dataset) and lightweight experiments. This service also pro-
vides a powerful Python API for manipulating rendering
jobs and performing custom work on each compute node.
Our cloud rendering system uses this Python API to pro-
grammatically submit rendering jobs, perform custom post-
processing tasks on each compute node, and collect render-
ing statistics.

Output. We used our cloud rendering system to generate
our entire dataset of 77,400 images at 1024×768 resolution,
and we scaled up to 100 compute nodes rendering images
in parallel.

2. Experimental Details
Tone Mapping The images in our dataset are stored in an
unclamped HDR format, but our real-world test images are
LDR images in the range [0, 1]. To account for this domain
gap, we apply the following tone-mapping method [6] to
our images during training. We scale each image and apply
gamma correction, such that the 90th-percentile brightness
value in our original image has a new brightness value of

0.8 after scaling and gamma correction. We then clamp our
scaled and gamma-corrected image to the range [0, 1].
Semantic Segmentation We use an identical training
recipe during pre-training and fine-tuning. During each
training phase, we train for 100 epochs. We use a one-cycle
[10] cosine learning rate schedule [7] with an initial learning
rate of 0.01 and a linear warm-up of 3 epochs [2]. We use
a distributed data-parallel training strategy with an effective
batch size of 64 images per batch (8 images per batch per
replica × 8 replicas), and we use cross-replica batch nor-
malization [5] to aggregate batch statistics across replicas.

We apply the following data augmentations during train-
ing. We crop1 each image with a randomly selected scale
in the range [0.08, 1.0], a randomly selected aspect ratio in
the range [0.75, 1.33], and we resize our cropped image to
a constant final size of 512×512. We also horizontally flip
each image with probability 0.5. Finally, we perturb2 the
hue, saturation, and brightness of each image with probabil-
ity 0.5. When perturbing the hue, saturation, and brightness
of our image, we randomly select a hue factor in the range
[-0.375, 0.375], a saturation factor in the range [0.25, 1.75],
and a brightness factor in the range [0.25, 1.75]. When pre-
training on our dataset, we apply tone mapping before data
augmentation.
3D Shape Prediction When training our Mesh-R-CNN
model [1], we follow the authors’ training recipe exactly,
except we use a base learning rate of 0.005 (instead of the
recommended value of 0.02) during pre-training.

Our dataset is annotated with NYU40 labels [3, 9], but
Pix3D [11] is annotated with a 9-class label set that only
partially overlaps with NYU40. To account for this mis-
match, we exclude all instances during pre-training ex-
cept those belonging to the following NYU40 classes: bed,
chair, sofa, table, bookshelf (bookcase), desk, dresser
(wardrobe), pillow (misc), refrigerator (misc), television
(misc), box (misc), nightstand (table), sink (misc). We indi-
cate our mapping from NYU40 to Pix3D classes in paren-
theses for all ambiguous cases. We found that Mesh-R-
CNN training can become numerically unstable when a
mesh extends beyond the training image’s camera frustum,
so we exclude any such instances during pre-training.

References
[1] Georgia Gkioxari, Jitendra Malik, and Justin Johnson. Mesh

R-CNN. In ICCV 2019. 2
[2] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noord-

huis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch,
Yangqing Jia, and Kaiming He. Accurate, large minibatch
SGD: Training ImageNet in 1 hour. arXiv 2017. 2

1 https://pytorch.org/vision/stable/transforms.
html#torchvision.transforms.RandomResizedCrop

2 https://pytorch.org/vision/stable/transforms.
html#torchvision.transforms.ColorJitter

https://pytorch.org/vision/stable/transforms.html#torchvision.transforms.RandomResizedCrop
https://pytorch.org/vision/stable/transforms.html#torchvision.transforms.RandomResizedCrop
https://pytorch.org/vision/stable/transforms.html#torchvision.transforms.ColorJitter
https://pytorch.org/vision/stable/transforms.html#torchvision.transforms.ColorJitter


[3] Saurabh Gupta, Pablo Arbelaez, and Jitendra Malik. Per-
ceptual organization and recognition of indoor scenes from
RGB-D images. In CVPR 2013. 2

[4] Armin Hornung, Kai M. Wurm, Maren Bennewitz, Cyrill
Stachniss, and Wolfram Burgard. OctoMap: An efficient
probabilistic 3D mapping framework based on octrees. Au-
tonomous Robots, 34(3), 2013. 1

[5] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. In ICML 2015. 2

[6] Zhengqi Li and Noah Snavely. CGIntrinsics: Better intrinsic
image decomposition through physically-based rendering. In
ECCV 2018. 2

[7] Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradi-
ent descent with warm restarts. In ICLR 2017. 2

[8] John McCormac, Ankur Handa, Stefan Leutenegger, and
Andrew J. Davison. SceneNet RGB-D: Can 5M synthetic
images beat generic ImageNet pre-training on indoor seg-
mentation? In ICCV 2017. 1

[9] Nathan Silberman, Pushmeet Kohli, Derek Hoiem, and Rob
Fergus. Indoor segmentation and support inference from
RGBD images. In ECCV 2012. 2

[10] Leslie N. Smith and Nicholay Topin. Super-convergence:
Very fast training of neural networks using large learning
rates. arXiv 2017. 2

[11] Xingyuan Sun, Jiajun Wu, Xiuming Zhang, Zhoutong
Zhang, Chengkai Zhang, Tianfan Xue, Joshua B. Tenen-
baum, and William T. Freeman. Pix3D: Dataset and methods
for single-image 3D shape modeling. In CVPR 2017. 2


