
Supplementary Materials

1. Implementation details
1.1. StructureNet losses

We train LSD-StructureNet with the loss

L = Lvar + Lrecon + Lsc (1)

where Lvar is the variational loss defined in section 3.3.
We proceed to briefly summarize the meanings of losses
Lrecon and Lsc that were originally introduced in [1].

The reconstruction loss Lrecon seeks to evaluate the best
possible correspondence between input shape S and output
S ′. This is achieved by computing a linear assignment be-
tween parts of the input and output. Parts are matched via
comparison of the geometries of the parts in each shape hi-
erarchy. This assignment is then evaluated based on the ge-
ometry of the resulting pairs of parts, which are compared
on the one hand via chamfer distance and via bounding
box normals when the geometry is represented as bound-
ing boxes. The existence of parts P, edges R, leaf nodes in
H and semantic labels are also compared via cross-entropy.

The structure consistency loss Lsc seeks to enforce con-
sistency between the geometric relationships R between
siblings of a parent node in H (recall that these can be of
types adjacency or rotational/translational/reflective sym-
metry) and the geometry P of output shapes S. Symme-
tries are evaluated by computing an affine transformation
between the bounding boxes fitted to the point clouds cor-
responding to the parts connected by each edge in R, that
transforms one part such that the symmetry is satisfied.
The chamfer distance between the transformed and non-
transformed point clouds are summed over R to constitute
the final symmetry loss. For edges in R that are categorized
as adjacencies, the loss is simply the minimum distance be-
tween geometries summed over R.

1.2. Training details

We encode shape part geometry (bounding boxes or
point clouds) into 256-dim feature vectors. We dimension
the encoding and decoding LSTMs such that they respec-
tively output and input 512-dim feature vectors respectively.
Aside from the input dimensions of the graph decoder gdec
being 512 instead of 256, it and graph encoder genc are
identical to those of StructureNet. In terms of hyperparam-

Category Method Coverage↓ Quality↓ FPD↓

Chair
PQ-Net [1] 8.9 116.5 28.9
LSD-SNet 25.4 47.2 39.3

Lamp
PQ-Net [1] 7.10 110.3 51.2
LSD-SNet 5.9 67.8 141.3

Table 1. Quality, coverage and FPD of a set of 1000 sampled
shapes characterized by bounding box geometry sampled from
StructureNet, LSD-StructureNet and PQ-Net.

Figure 1. From a starting point at the top-left of the square decoded
from a sequence of latent vectors z, we interpolate between both
z1 and another latent vector z′1, and z2 and another latent vector
z′2 and decode the resulting sequences.

eters, we train LSD-StructureNet with the same weights at-
tributed to each of the losses described in the previous para-
graph, optimizer, learning rate, weight and learning rate de-
cay, etc. as vanilla StructureNet.



Figure 2. Conditional outputs. For 5 shapes each for StructureNet and LSD-StructureNet (1st columns), we generate 9 other conditioning
shapes (other columns) that only differ with respect to the subhierarchies of a given node (LSD-StructureNet) or are as similar as rejection
sampling allows (StructureNet). We provide results for each penultimate node of Chair, Table and Cabinet/Storage hierarchies. Best viewed
zoomed in.

2. Comparison with PQ-Net

We supplement our comparison to vanilla StructureNet
in Section 1 with a comparison to PQ-Net [2], a Seq2Seq

model that can encode and decode sequences of directly ob-
servable part geometries of PartNet shapes (i.e. parts ∈ P at
leaf nodes of part hierarchies H of shapes S = (P,H,R)
). We compare by sampling and decoding 1000 shapes



Figure 3. Unconditional outputs. We generate 100 Chairs, Tables and Cabinet/Storage shapes for both LSD-StructureNet and StructureNet.
Best viewed zoomed in.

from each method and report quality, coverage and FPD
for shapes in the Chair and Lamp categories as these were
the only two categories with available pretrained models for
PQ-Net.

PQ-Net generates and is trained on sequences of parts as
opposed to hierarchies. As such, it is not possible to aug-
ment PQ-Net directly so it can model intermediary levels
of structural detail as we do with LSD-StructureNet. De-
spite this, while we outperform PQ-Net in terms of qual-
ity and coverage, it exhibits far stronger FPD than LSD-
StructureNet, that mirror their similarly strong performance

against StructureNet on similar metrics [1]. This incen-
tivizes potential future work consisting of consolidating the
design choices of PQ-Net (obtention of latent space via La-
tent GAN instead of VAE and prediction of sequences, as
opposed to graphs, of parts) while retaining the hierarchi-
cal structure of LSD- and vanilla StructureNet inputs and
outputs.

3. Visualizing outputs
We decode several different z, linearly interpolating the

1st and 2nd vectors in the sequence between 2 extremes and



visualizing the resulting outputs in Figure 1 to provide in-
tuition as to the significance of the different latent spaces.
Note that the parts of PartNet object hierarchies with se-
mantic category chair arm fade in (top row) or out (bottom
row) when varying z1, as they are situated at depth 1 of
PartNet object hierarchies. The children of chair arm parts
are in this case leaf nodes with corresponding semantic cat-
egories arm sofa style (top-right corner) and arm horizontal
bar (bottom-right corner) at depth 2, which is why varying
z2 produces interpolations between these two types (right
column). In contrast, z2 does not modify the structure at
depth 1 and thus does not affect the presence of arms when
varying it. We also qualitatively compare our outputs and
those of StructureNet in Figures 2 and 3.
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