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Abstract

This is a supplementary document to the main
manuscript. Here we provide more numerical results.
Moreover, this document details pre-processing of real
world data, which is presented in section 7 of the main
manuscript. Additionally, we elaborate about the compu-
tational complexity of the method, give evaluation for the
Gaussian weights that were used in the main manuscript
and an interpretation using a hidden field for the iterative
procedure described in section 5.1 of the main manuscript.

1. Outline

This supplementary material contains five parts. The
first part (Sec. 2) elaborates on pre-processing which is ap-
plied to real world measurements, presented in Sec. 7 of
the main manuscript. This data was collected by the AirM-
SPI instrument. The second part, Sec. 3, provides an ad-
ditional example of the temporal auto-correlation of cloud
microphysics and more simulation results which were not
included in the main manuscript, for space limits. The third
part (Sec. 4) analyzes the computational complexity of our
proposed method. In Sec. 5, we give an interpretation for
the iterative procedure described in Sec. 5.1 of the main
manuscript using a hidden field representation. Sec. 6 pro-
vides an evaluation for the Gaussian weights that were used
in Sec. 5.1 of the main manuscript.

2. Pre-processing Real World Data

The main manuscript presents results using real world
measurements. The data were acquired by the AirMSPI in-
strument. As explained in Sec. 7 of the main manuscript,
while AirMSPI flies, clouds move due to wide-scale wind
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Figure 1. Geometry of the AirMSPI real world setup which led to
the data presented in Sec. 7 of the main manuscript. The color
represents the locations of the cloud and the AirMSPI instrument
in the different time states. The cloud’s outer contour and its cor-
responding center of mass, marked in a circle, are presented per
state. The AirMSPI location and velocity are marked by arrows.
The arrows point to the AirMSPI flight direction azimuth of 154◦

relative to the North. Due to the domain size, not all AirMSPI
locations are illustrated here. Due to wind, the cloud moves at
57 km/h in azimuth 182◦ relative to the North.

at their altitude. The geometry of AirMSPI’s path and the
cloud drift during the experiment is presented in Fig. 1
above. In order to eliminate the influence of wide-scale
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Figure 2. Illustration of estimation of the cloud altitude using a
shadow.

wind, a registration process of the cloud images is done.
Moreover, for tomographic recovery, we need to have an as-
sessment of the Earth surface albedo, under the clouds. This
section describes how pre-processing estimates the wind
and albedo.

2.1. Wind Estimation

Clouds are segmented from the surface automati-
cally [12]. Cloudy pixels are then used to estimate the
cloud center of mass in each image [7]. A registration
of these centers of mass can be done by triangulation.
However, triangulation of images of a moving object us-
ing a translating camera has an inherent ambiguity. This
ambiguity can be solved if the cloud height is known.
In this work, we assess this altitude of a cloud by its
shadow [1, 6, 8]. Let (xcl, ycl, zcl) and (xshad, yshad, 0)
be a point on a cloud and its corresponding shadow point
on the earth surface, respectively (see Fig. 2 above). Let
%shad =

√
(xcl − xshad)2 + (ycl − yshad)2. We obtain

xcl, ycl, xshad and yshad from the AirMSPI images. Given
the solar zenith angle relative to the nadir θsun, the altitude
zcl satisfies

zcl =
%shad

tan(θsun)
. (1)

For the example shown in Sec. 7 of the main manuscript, we
estimated the cloud base height as ≈ 500m and its top at
≈ 1100m. Indeed taking MODIS/AQUA [2] retrievals of
cloud top heights, indicate that the clouds’ top in the region1

does not exceed 1000 m, which makes our approximation
reasonable.

We approximate the cloud horizontal velocity by back-
projecting the images from the locations of the cameras to
the altitude of zcl. From the center of mass of these back-
projections, we assess the velocity. We register the camera
locations so the projections of the center of mass of all im-
ages intersect at the same point at altitude of zcl. The im-

1This data applies over the coast of California, 38N 122W,on
Feb/03/2013 at 13:30 local time.

ages and the new locations of the camera are the input for
the 4D tomographic recovery.

2.2. Surface Albedo Estimation

3D radiative transfer calculations require the surface
albedo. We use non-cloudy pixels to estimate the albedo.
Let Y be a set of non-cloudy pixels. We estimate the sur-
face albedo aground as,

âground = argmin
a

∑
y∈Y
||y −F(βair; a)||22 , (2)

where βair represents the extinction coefficient of air in 3D
with no clouds. Here F(βair; a) is a rendering (forward)
model, where the surface albedo is set to be a. That is, sun-
light interacts only with the air and the surface. Scattering
by air is assumed to be known [5, 13]. The optimization
problem is solved by the Brent minimization method [3],
implemented by the SciPy package [11]. For the example
shown in Sec. 7 of the main manuscript, the surface albedo
is estimated to be 0.04.

3. Additional Simulations
3.1. Cloud Temporal Spectrum

Sec. 3 of the main manuscript indicates that the correla-
tion time of a convective cloud at 10 sec resolution is about
20 to 50 seconds. Thus, a temporal sampling period of
30 sec or shorter is required. We assess this in an additional
cloud simulation. We conducted a single cloud simulation
in high resolution, using small changes, relative to the sim-
ulation described in Sec. 6 of the main manuscript. The
simulation parameters and setting are similar. However, the
perturbation that initiates the convection and turbulent flow
has a smaller horizontal size. This creates a smaller cloud
with a horizontal width of ≈400 m. This cloud is more sen-
sitive to mixing and evaporation than the cloud in the main
manuscript whose width is ≈800 m. Because mixing with
the environment is more intense here, the clouds’ growth is
inhibited. It cannot exceed a height of 1400 m, compared to
a 2000 m ceiling of the cloud in the main manuscript.

Using the same process described in Sec. 3 of the main
manuscript, the temporal auto-correlation functions of Lt
and horizontally-averaged ret are presented in Fig. 3[Top] in
the next page. The auto-correlation function of ret behaves
similarly to that of vet . Here the required temporal sampling
period is more tolerable compared to the presented temporal
sampling period in the main manuscript.

3.2. Additional Tomography Results

Recall that our method is demonstrated on two simu-
lated clouds, Cloud (i) and Cloud (ii), using several types
of imaging setups: Setup A, Setup B and Baseline.
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Figure 3. [Top] Auto-correlation of cloud field microphysics. The
auto-correlation of LWC and re decreases to 0.5 after 30 sec
and 310 sec, respectively. [Bottom] MSE (Eq. 13 in the main
manuscript) of LWC and re.
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Figure 4. Cloud (ii). Results of recovery by the Baseline and
Setup A are compared to the ground-truth.

Fig. 4 above presents the 3D tomographic results of
Cloud (ii) at t = (t1 + tNstate)/2 using Setup A. The
recovery used σ = 20 sec. Moreover, recall the error mea-
sures as Eq. (19) defined in the main manuscript. Fig. 5
above presents εt, ε for Cloud (ii). It reinforces the assess-
ment that a value σ ∼ 20 sec is natural, as explained in
Sec. 3 of the main manuscript.
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Figure 5. Cloud (ii). The errors εt in the main manuscript are
marked by colored circles, whose saturation decays the farther the
sampling time is from (t1+tNstate)/2. The measure ε in the main
manuscript is marked by solid or dashed lines, with corresponding
colors. The setting σ =∞ refers to the solution by the state of the
art, i.e. 3D static scattering tomography.

σ = 20 sec σ = 60 sec σ =∞
Setup A 0.45 0.55 0.64
Setup B 0.6 0.66 0.74
Setup C 0.79 0.74 0.9

Table 1. The error εt in the main manuscript at t = (t1 +
tNstate)/2 of Cloud (i), when T = 10 sec. The state of the art
3D static CT complies with σ =∞.

Figs. 6 and 7 in the next page respectively visualize the
results of Cloud (i) and Cloud (ii). The 3D cut-sections
of the error |Ltrue

t (x) − L̂t(x)| at t = (t1 + tNstate)/2
are presented for Setup A, Setup B and Baseline in
Figs. 6 and 7[Top]. Fig. 7[Bottom] uses scatter plots to
compare the ground-truth to the results obtained by either
the Baseline, Setup A or Setup B. Also, we com-
pare the recovery results at t = (t1 + tNstate)/2 quantita-
tively for the three setups in Table 1 above.

4. Computational Complexity
Sec. 5.1 of the main manuscript introduces an iterative

procedure for 4D CT estimation of cloud LWC

Lt(k + 1) = Lt(k)− ηgt[B(k)] , (3)

where

gt(B) =
∑
t′∈T

wt(t
′|σ)∂F (Lt′)

∂Lt′
[F (Lt′)− yt′ ] . (4)

The time complexity for solving Eqs. (3,4) above is gov-
erned by the gradient calculation gt(B). Computing the Ja-
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Figure 6. Cloud (i). 3D cut-sections of the error |Ltrue
t (x)− L̂t(x)| at t = (t1 + tNstate)/2 for Baseline, Setup A and Setup B.
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Figure 7. Cloud (ii) comparison for Baseline, Setup A and Setup B. [Top] 3D cut-sections of the error |Ltrue
t (x) − L̂t(x)| at

t = (t1 + tNstate)/2. [Bottom] Scatter plots that use randomly selected 20% of the data points, for display clarity. The Baseline,
Setup A and Setup B scatter plot correlations are 0.92, 0.82 and 0.78, respectively.

cobian ∂F (Lt′) /∂Lt′ in Eq. (4) is complex, thus it is es-
tablished numerically by a surrogate function that evolves
through iterations [7, 9]. Calculating the gradient includes
two dominant time-consuming processes that are executed
in alternation. The first process calculates the forward
model for the N state cloud states {F (Lt′)}t′∈T . The

second process sums over the entire set of measurements,
which does not depend on the number of cloud states that
we seek to recover.

A spherical harmonic discrete ordinate method
(SHDOM) code is used for computing the numerical
forward model F(·) and the Jacobian. SHDOM iteratively



updates the estimation of 3D radiation fields until conver-
gence. Calculating the forward model for the N state cloud
states can be done in parallel. Thus, the time complexity
is governed by the temporal state, for which the SHDOM
forward model code takes the longest time to compute.
By calculating the forward model for all cloud states in
parallel, the time complexity of gradient calculation is in-
sensitive to the number of cloud states N state. Algorithm 1
is a pseudo-code of our algorithm. The source code is
publicly available at [10].

Algorithm 1 4D Cloud Scattering Tomography
Require: {yt′}t′∈T and σ ≥ 0
B(0) = {Lt′ = 0.01}t′∈T
k = 0
repeat

Calculate {F [Lt′(k)]}t′∈T . In parallel

Approximate
{

∂F
∂Lt′

[Lt′(k)]
}
t′∈T

. Ref. [7]

Calculate {gt′ [B(k)]}t′∈T . Eq. (4)
∀t ∈ T update Lt(k + 1) . Eq. (3)
k = k + 1

until converge {yt′ ≈ F [Lt′(k)]}t′∈T

As a numerical example, we used 20 iterations of the
L-BFGS-B optimization. Using measurements of Cloud (i)
acquired by Setup A, the run-time of the solution by our
method was 501 sec. The static solution took 301 sec. In
both, the computer was Intel® Xeon® Gold 6240 CPU @
2.60GHz with 72 cores. Although our method recovers
N state = 7 times more voxels, the run-time is less than
twice that of the static solution. The time difference is
caused by overheads of saving and loading larger data with
our method, and nonoptimal task division for the cores.

5. Cost on a Hidden Field
In this section, we present an interpretation for the itera-

tive procedure of solving the problem of 4D CT estimation
of cloud LWC (Eqs. 3,4 above). Recall that Eq. (18) in the
main manuscript defines wt(t′|σ) as Gaussian weights

wt(t
′|σ) = s exp

(
−|t− t

′|2

2σ2

)
, (5)

where s is a normalization factor. Let wt(t′|σ̃) be Gaussian
weights with variance σ̃2. Suppose the cloud LWC can be
represented by

Lt

[
Bhidden

]
=
∑
t′∈T

wt(t
′|σ̃)Lhidden

t′ , (6)

where Lhidden
t is a hidden representation at time t and

Bhidden = {Lhidden
t′ }t′∈T . The set Bhidden is equivalent

to the set B = {Lt}∀t through a linear transformation hav-
ing Gaussian weights. Let us formulate 4D CT using the
hidden field representation

B̂hidden = argmin
Bhidden

∑
t∈T
E
[
yt,F

(
Bhidden

)]
. (7)

Recall that yt, the measurements acquired at time t, de-
pends explicitly only on the cloud state at this time, Lt.
Thus,

E
[
yt,F

(
Bhidden

)]
=

1

2
‖yt −F

(
Lt[Bhidden]

)
‖22 . (8)

Eq. (7) above can be solved efficiently by gradient-based
methods. The gradient of Eq. (7) above is

∂

∂Lhidden
t

∑
t′∈T
E
[
yt,F

(
Bhidden

)]
=

∑
t′∈T

∂E [yt′ ,F (Lt′)]

∂Lt′

∂Lt′

∂Lhidden
t

. (9)

From Eq. (8) above,

∂E [yt′ ,F (Lt′)]

∂Lt′
=
∂F (Lt′)

∂Lt′
[F (Lt′)− yt′ ] , (10)

while from Eq. (6) above,

∂Lt′

∂Lhidden
t

= wt(t
′|σ̃) . (11)

From Eqs. (9,10,11) above, for optimizing problem (7)
above, the gradient is

ghidden
t (B) =

∑
t′∈T

wt(t
′|σ̃)∂F (Lt′)

∂Lt′
[F (Lt′)− yt′ ] .

(12)
A gradient-based approach then performs per iteration k:

Lhidden
t (k + 1) = Lhidden

t (k)− ηghidden
t [B(k)] (13)

where η is a step size. Every iteration, B(k) is updated by
Eq. (6) above,

Lt(k + 1) =
∑
t′∈T

wt(t
′|σ̃)Lhidden

t′ (k + 1) . (14)

Substitute Eq. (13) above into Eq. (14) above,

Lt(k+1) = Lt(k)− η
∑
t′∈T

wt(t
′|σ̃)ghidden

t′ [B(k)] . (15)

Now, we use the approximation

wt(t
′|σ) ≈

∑
t′′∈T

wt(t
′′|σ̃)wt′(t′′|σ̃) , (16)



where
σ =
√
2σ̃ . (17)

We explain the approximation in Eq. (16) above using prop-
erties of continuous Gaussian PDFs, as we now explain. Let
fµ(ξ|σ̃) and fµ′(ξ|σ̃) be two Gaussian PDFs with variance
σ̃2 and respective expectations µ and µ′. Being a PDF,∫ ∞

−∞
f(µ+µ′)/2(ξ|σ̃/

√
2) dξ = 1 . (18)

From [4],

fµ(ξ|σ̃)fµ′(ξ|σ̃) = fµ(µ
′|
√
2σ̃)f(µ+µ′)/2(ξ|σ̃/

√
2) .

(19)
From Eq. (18) above,

fµ(µ
′|
√
2σ̃) = fµ(µ

′|
√
2σ̃)

∫ ∞
−∞

f(µ+µ′)/2(ξ|σ̃/
√
2) dξ

=

∫ ∞
−∞
fµ(µ

′|
√
2σ̃)f(µ+µ′)/2(ξ|σ̃/

√
2) dξ .

(20)

From Eqs. (19,20) above,

fµ(µ
′|
√
2σ̃) =

∫ ∞
−∞

fµ(ξ|σ̃)fµ′(ξ|σ̃) dξ . (21)

Discretizing the integral of Eq. (21) above, an approximate
finite sum yields Eq. (16) above.

Substitute Eq. (16) above into Eq. (4) above

gt(B) ≈∑
t′∈T

∑
t′′∈T

wt(t
′′|σ̃)wt′(t′′|σ̃)

∂F (Lt′)

∂Lt′
[F (Lt′)− yt′ ] .

(22)

Swap the summation order of Eq. (22) above:

gt(B) ≈∑
t′′∈T

wt(t
′′|σ̃)

∑
t′∈T

wt′(t
′′|σ̃)∂F (Lt′)

∂Lt′
[F (Lt′)− yt′ ] .

(23)

Substitute Eq. (12) above into Eq. (23) above and use the
property that wt′(t′′|σ̃) = wt′′(t

′|σ̃). This yields,

gt(B) ≈
∑
t′′∈T

wt(t
′′|σ̃)ghidden

t′′ (B) . (24)

Substituting Eq. (24) above into Eq. (15) above yields the
iteration move in Eq. (3) above

Lt(k + 1) ≈ Lt(k)− η
∑
t′∈T

wt(t
′|σ̃)ghidden

t′ [B(k)]

= Lt(k)− ηgt[B(k)] . (25)

Thus, the iterative procedure for 4D CT estimation in the
main manuscript (Eqs. 3,4 above) can be interpreted as solv-
ing Eq. (7) above.
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Figure 8. [Top] Optimal wt(t
′) are presented in blue circles and

their Gaussian fit in red line. [Bottom] Comparison of true Lt and
L̂t by a scatter plot.

6. Kernel Assessment for Cloud Tomography

Recall Eq. (11) in the main manuscript,

βt ∼
∑
t′

wt(t
′|T )βsample

t′ . (26)

We now assess the approximation of using cropped Gaus-
sian as the kernel wt(t′|T ) for recovering cloud LWC. In
tomography, we do not have direct sampling of the Lsample

t′

at time t′ ∈ T . We only have projected images. Let L̃t′ be
the tomographic recovery of the LWC using only measure-
ments acquired at time t′. We approximate Lsample

t′ ≈ L̃t′ .
Hence instead of Eq. (26) above, suppose we approximate
Lt as

L̂t({wt(t′)}t′∈T ) ≈
∑
t′∈T

wt(t
′)L̃t′ . (27)



Let us seek the optimal set of weights {wt(t′)}t′∈T by

{ŵt(t′)}t′∈T = argmin
{wt(t′)}t′∈T

||Lt−L̃t({wt(t′)}t′∈T )||22 . (28)

Fig. 8[Top] herein shows the optimal wt(t′). The
plot shows that the weights are approximately Gaussian.
Fig. 8[Bottom] herein shows a scatter plot of L̂t vs. true
values Ltrue

t for Cloud (i), in Setup A. Fig. 8[Bottom]
indicates that L̂t({wt}t∈T ) based on this Gaussian-weight
set yields a good approximation of Lt. These results sup-
port the use of Gaussian weights for 4D CT of cloud LWC
(Eqs. 3,4 above).
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