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Abstract

In this Appendix, we provide details about the PADISI-
Face and details about the experimental setup.

1. PADISI-Face Dataset
Previous efforts on generating face PAD datasets have

been focused on a number of major attack types, including,
disguises, printed photographs, 3D masks, and replays. As
novel types of attacks emerge, existing datasets might be in-
sufficient to guarantee designing suitable PAD algorithms be-
cause there has not been enough effort in generating datasets
that cover a wide variety of attack categories. Table 1 sum-
marizes a number of highly prevalent face PAD datasets
in the literature. The table provides information about the
types of presentation attack instruments (PAIs) present in
each dataset. As it can be seen, these datasets are limited in
terms of diversity of attack types they contain. PADISI-Face
is a new dataset captured from 182 different participants to
offer more diverse set of attack types. Due to granular labels
on these attack types, PADISI-Face is a suitable dataset for
testing models in continual learning settings or when there
should be significant variations between the training and
testing datasets.

The PADISI-Face Dataset is collected using a sensor ar-
ray designed and built by our team, shown in Figure 1 [10].
The system is designed for more comprehensive future ver-
sions of PADISI-Face that will contain beyond the visible
range information. The hardware comprises of six differ-
ent cameras spanning visible (RGB), short-wave-infrared
(SWIR) and long-wave infrared (Thermal) electromagnetic
spectrum ranges. Additionally, there are two near-infrared
(NIR) cameras for high quality stereo depth estimation. For
acquisition of data in NIR and SWIR spectra, a synchro-
nized illumination of different wavelength LEDs (shown in
Figure 1) were used. The synchronized sequence of LED
illuminations were designed to maximize the throughput of
the camera suite while increasing the temporal coherence
between frames. Figure 2 shows some examples of images

Table 1: Multi-spectral PAD Datasets

Dataset Year Participants Attacks
Pavlidis Symosek [7] 2000 − Facial disguises

3DMAD [5] 2013 17 3D mask attacks
I2BVSD [4] 2013 75 Facial disguises

GUC-LiFFAD [8] 2015 80 2D print and replay
MS-Spoof [3] 2015 21 2D print

BRSU [11] 2016 50 3D masks
EMSPAD [9] 2017 50 2D print

MLFP [1] 2017 10 2D & 3D masks
CASIA-SURF [12] 2020 1000 2D print & cutouts

MAFPAD 2020 360
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Figure 1: Face biometric sensor suite.

collected for bona-fide and several attack samples using the
sensor array in various light ranges. For NIR and SWIR
modalities, dark channel subtraction is performed to reduce
the effect of ambient illumination. Data was collected from
each participant over two rounds. In the first round, bona fide
samples were collected. Participants presented a presentation
attack instrument (PAI) in the second round. PADISI-Face
will be available for the use of the research community.

To enable face detection in all captured frames, we use a
standard calibration process using checkerboards [13]. For
the checkerboard to be visible in all wavelength regimes,
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Figure 2: RGB visualization of samples collected for all types of PAIs are summarized in this figure. For each image, the
corresponding dark channel has been subtracted and each RGB channel has been min-max normalized for visualization
purposes. Note, not all images have the same resolution but are resized for fine arrangement.

a manual approach is used when a sequence of frames is
captured offline while the checkerboard is being lit with a
bright halogen light. This makes the checkerboard pattern
visible and detectable by all cameras which allows the stan-
dard calibration estimation process to be followed. The face
can then be easily detected in the RGB space [2] and the
calculated transformation for each camera can be applied to
detect the face in the remaining camera frames.

Following the aforementioned approach, face landmarks

are detected on the visible spectrum using [2]. A bounding
box is then constructed from the landmarks to have a tight
crop of the face. The bounding box of the visible spectrum
is then projected to the corresponding co-ordinate system
of the other cameras to extract approximately aligned faces
on different modalities. Each channel is then scaled to the
range [0, 1] by dividing the bit depth of the camera and
then resized to 160 × 160 pixels. In our experiments, we
use the visible range information as input to our algorithm.



Table 2: Effect of knowing labels for the challenging data
points using the PADISI-Face dataset in the single PA/task
scenario. Results for NACL are taken from the bottom left
of Fig. 5.

Task APCER (%) BPCER (%) ACER (%)
No. NACL DL NACL DL NACL DL
1 46.1 27.8 10.7 4.8 28.4 16.3
2 38.2 24.8 10.1 1.0 24.1 12.9
3 41.4 27.0 14.1 1.5 27.8 14.2
4 29.1 19.9 15.0 1.1 22.0 10.5
5 15.1 12.5 18.1 4.3 16.6 8.4
6 19.4 16.0 18.0 3.7 18.7 9.8
7 17.2 15.1 17.0 2.6 17.1 8.9
8 18.2 13.8 17.4 2.8 17.8 8.3

A future direction includes considering beyond the visible
information to perform PAD.

2. Reducing False-Positive Predictions
Our primary focus has been on reducing the false-negative

predictions. In practical settings, we can assume labels for
detected novel data points can be accessible with a delay by
the end of each task, e.g., using manual annotation. To model
this possibility, we performed an experiment using a selec-
tion scheme that assumes manual annotation is possible, i.e.,
label pollution is reduced to zero. Since updating the model
occurs at discrete periods at the end of each task, we have
assumed the delay for labeling is less than the time needed
to update the model. Hence by the time a task finishes, we
assume the labels for the novel samples are accessible before
updating the model. Table 2 presents results for the PADISI-
Face dataset in the single PA/task scenario, where we have
compared Delayed Labels (DL) with NACL. We observe
that this sampling scheme leads to reduced false-negative
predictions. Additionally, we observe BPCER performance
also improves.

3. Experimental Setup Details
We provide details that we used to perform experiments.

3.1. Network structure

In our experiments, the network is consisted of a pre-
trained fixed backbone encoder, followed by fully connected
layers to reach to the label space.

Backbone Model
An important limitation of CNN models when trained on

small datasets, such as biometric datasets, is that they tend to
select features which are not generalizable due to overfitting.
For this purpose, we opted for employing MoCo-v1 as a
fixed backbone network [6] to improve generalizability of
the extracted features. This network is trained on ImageNet
using a contrastive loss that attempts to find similarities
and dissimilarities among synthesized variants of training

data samples in an unsupervised way. It is subclass of self-
supervised learning at which a deep neural network is trained
to solve pseudo-tasks. As a result, the network learns to
extract discriminative features at its early layers to solve the
pseudo-tasks. Thus, when we use MoCo-v1 as our backbone
for PAD in a continual learning setting, no input or label
information of the future PA types have been used to train
the feature extraction model. This property ensures that
no information about the training dataset has been used in
training the model. This allows to claim that the new attacks
are indeed unseen. We note that extracting features using
this pre-trained network leads to an separability of different
types of attacks, as shown in the t-SNE visualizations of
Figure 3, for PADISI-Face dataset as an example which
enables our model to identify data points that belong to new
attack classes. This observation demonstrates we can use
the backbone model as a good feature extractor to identify
OTDS.

Learnable Layers
We use the same end-to-end network structure for a fair

comparison among the methods. The MoCo backbone is fol-
lowed by three fully connected layers with 64, 32, and 2 (turn
into 3 nodes when the model is trained to identify OTDS)
nodes each. MoCo’s encoder is in essence a ResNet50 archi-
tecture with 128 output nodes, used here as discriminative
feature vectors to improve classification. In all experiments,
the weights of the backbone network are frozen and learn-
able parameters θ in our formulated would refer to the last
fully connected layers. We use ReLU non-linearity in the
first two layers and softmax non-linearity in the final layer.
We have selected the layer with 32 nodes to represent the
embedding space Z on which the CL approach is performed,
as described in the paper. At each task, the network is trained
with 2 output nodes and performance on the testing split is
measured during training. When the task is learned, the
network output is extended to include a third output. After
identifying the OTDS, the network again is trained with 2
outputs. This process is continued until all tasks are learned.
To reduce redundancy of inference at stochastic gradient
descent step, we compute the input features initially and
perform optimization just on the learnable layers. By doing
so, we reduce learning time but have the understanding that
in practice, inference also needs to be performed end-to-end.

3.2. Implementation Parameters

We use the cross entropy loss as the discrimination loss.
We used Keras for implementation of the algorithm and
the Adam optimizer to perform stochastic gradient descent.
The learning rate is set to be 2 × 10−4 with a decay rate
of 10−4. We use a batch size of 100. At each batch, we
select 100 points randomly and make sure the batch is bal-
anced. To learn each task, we randomly initialize all the
trainable weights (fully connected layers) and perform opti-



Figure 3: t-SNE visualization of features obtained using
the pre-trained model of [6] (MoCo-v1), for PADISI-Face
dataset. One frame, per capture, is used for this visualization.

mization using 10000 batches. At each training epoch, we
computed the loss function on the training data split and the
performance metrics on the testing split. We ran our code
on a cluster node equipped with 4 Nvidia Tesla P100-SXM2
GPU’s. Our code is provided as part of the supplementary
material.
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