
EventHands: Real-Time Neural 3D Hand Pose Estimation from an Event Stream
–Supplementary Document–

Viktor Rudnev1 Vladislav Golyanik1 Jiayi Wang1 Hans-Peter Seidel1

Franziska Mueller2 Mohamed Elgharib1 Christian Theobalt1

1MPI for Informatics, SIC 2Google Inc.

In this document, we provide more insights on our Event-
Hands method and additional experimental results. First,
Sec. 1 discusses details about the experiments and further
results. Subsequently, we explain the parameters of the
Kalman filter in detail (Sec. 2) and the architecture choice
for our neural network (Sec. 3). Sec. 4 contains further de-
tails about our simulator and the dataset, including the value
ranges used for augmentation. The supplementary video
can be found at https://4dqv.mpi-inf.mpg.de/
EventHands/.

1. Experimental Details
1.1. Baseline Event Representations

Here we describe the baseline event representations used
for the ablation study.
Event Occurence Image (EOI). We define EOI ∈
RW×H×2 to be the event occurence image which is ini-
tialised with zeros at the beginning. Then, for each event
in the current window E = {(ti, xi, yi, pi)}Nk

i=1, we update
the event occurence image by the following assignment:

EOI(xi, yi, pi) = 1. (1)

Thus, EOI(xi, yi, pi) indicates whether an event with po-
larity pi has occurred in the window, but it does not consider
the temporal event information.
Single-Channel Event Count Image (ECI-S). The single-
channel event count image ECI-S ∈ RW×H counts the
number of events that occurred at a given pixel, irrespective
of their polarity

ECI-S(x, y) = |{ei ∈ E | (x, y) = (xi, yi)}| , (2)

where xi, yi is the position of event ei ∈ E .
Event Count Image (ECI). Similar to ECI-S, the event
count image ECI ∈ RW×H×2 also counts the number of
events in each pixel, however, it contains one channel for
each polarity

ECI(x, y, p) = |{ei ∈ E |(x, y) = (xi, yi)∧p = pi}| , (3)

where xi, yi is the position of event ei ∈ E and pi is its
polarity.

1.2. Slow-Motion Settings

Although the event stream representation is best suited
for fast hands, our approach can be adapted, without re-
training the model, to also handle slow or stationary hand
motions which generate only a small number of events.

Usually, we generate a new LNES with a duration of
100ms every 1ms. In the slow motion setting, there might
not always be enough new events to generate a new LNES.
When there are fewer than 10 new events since the last gen-
erated LNES, we delay generating a new LNES until at least
10 new events have happened. In the case of stationary
hands, noise events could eventually accumulate to gener-
ate a new LNES frame and cause a random prediction. We
detect this degenerate case by checking the average amount
of event information in the last 16 LNES frames. The pixel
values inside LNES are time stamps and range from 0 (old-
est event) to 1 (newest event). We can hence calculate the
total amount of event information in each LNES by sum-
ming over all LNES pixel values, which gives more weight
to more recent events in each LNES. If the average amount
of event information over the last 16 LNES is less than 300,
we assume the hand is stationary and repeat the last pre-
diction. Lastly, we use an additional Kalman filter with
the slow setting (see Section 5.3) to detect when faster mo-
tions occur. If its residual error is ≥0.7, we switch the main
Kalman filter to the fast setting, otherwise we switch it to
the slow setting. All values are selected empirically. We
show results of this adaptation to slow hands in the supple-
mentary video from 7:30 to 7:45.

1.3. Additional Results

1.3.1 Ablation Studies

In Fig. 1, we show the PCK curves corresponding to the
AUC values reported in Table 1 in the main paper. We com-
pare different settings of our method (no filtering, no aug-

https://4dqv.mpi-inf.mpg.de/EventHands/
https://4dqv.mpi-inf.mpg.de/EventHands/

mentation) and different event representations on real test
data. The proposed method achieves the best result. Please
refer to Section 6.2 in the main paper for a more detailed
discussion.

1.3.2 Performance of Depth-based Methods

Most commodity depth cameras rely on structured light or
time-of-flight techniques to estimate the depth. However,
for fast motion scenarios targeted by our method, these
techniques produce depth estimates that are severely cor-
rupted with many missing depth values. As shown in Fig. 2,
depth-based state-of-the-art methods such as Moon et al. [3]
cannot handle such artefacts and hence produce erroneous
pose estimates.

1.3.3 Qualitative Results

Fig. 3 shows more qualitative results for different subjects
that we captured with the DAVIS240C event camera (Even-
tHands uses event stream only). Furthermore, we provide
results of a network trained with the arm entering the field
of view from the bottom in Fig. 4. In this experiment, we
use additional 55 hours of generated event stream data for
training.

1.3.4 Low-Light Performance

We also annotated a 7 second part of the recorded low-light
event stream. The annotations were done the same way as
described in Section 6.1, with 236 frames and 1645 key-
points annotated in total. For visual results of our method
on the extended material, please refer to the supplementary
video (at 07:45).

2. Temporal Filtering
We use a Kalman filter [1] with constant velocity as-

sumption to post-process our raw predictions θ ∈ R12. The
corresponding state vector S ∈ R24 is given by

S =
[
θ1 θ̇1 . . . θ12 θ̇12

]T
, (4)

where θ̇i is the velocity of i-th parameter θi. We model
changes in velocities θ̇i as independent Gaussian white
noise (i.e., temporally uncorrelated). For a given process
noise variance σ2

P , the discrete white noise covariance ma-
trix operator produces a block-diagonal covariance matrix

ω(σ2
P) = σ2

P

W1
. . .

W12

 . (5)

This matrix models uncertainty in updating both the posi-
tion θ and velocity θ̇ in the state vector S. In Eq. (5), Wi is

the process noise covariance matrix of [θi, θ̇i]:

Wi =

(
1
4∆t4 1

2∆t3

1
2∆t3 ∆t2

)
, (6)

where ∆t is the temporal step size.

3. Choosing Network Architecture
Besides ResNet-18, we examined other base models in-

cluding VGG-{11,13,16,19} (with batch normalisation) [5],
MobileNet v2 [4], ShuffleNet v2 [2], Inception v3 [6],
MnasNet [7] and ResNet-34. Out of these models, only
MobileNet v2, ResNet-34 and VGG networks produced
validation losses comparable to ResNet-18. However, the
smallest examined VGG network and ResNet-34 were un-
able to handle real-time processing at 1000 Hz, which was
one of our main goals. Furthermore, while the inference
time of MobileNet v2 was faster than that of ResNet-18, we
select ResNet-18 as the base model as it has higher predic-
tion accuracy and enables 1000 frames per second.

4. Simulator and Dataset Details
This section provides more details on the implementa-

tion of our GPU-based event simulator and the format used
for storing our dataset.

4.1. Implementation Details

The simulator is developed in C++ using

• CUDA, cuBLAS, cuRAND — for computing MANO
pose-corrective mesh offsets (that reduce skinning
artefacts) on GPU and event camera simulation,

• OpenGL — for posing the skinned and corrected
MANO mesh as well as rendering the scene,

• xtensor — for computing MANO shape template mesh
and textures on CPU and for loading MANO data, and

• SDL2 — for image loading and OpenGL context man-
agement.

All mesh operations that happen every frame, are per-
formed entirely on GPU using GPU memory only. Only
two CPU-GPU memory transfers are needed per frame to
obtain the current pose vector and the event stream output.

This and other optimisations allow fast simulation of the
full SMPL+H body model at 240×180 resolution, which
is the resolution of the DAVIS240C event camera that we
use for the experiments. On a single NVIDIA GeForce
GTX1070, two instances of the simulator can be launched
simultaneously to obtain events at rates of around 2000 sim-
ulated time steps per second. Considering that we use a time
step equal to 1/1000 of a second, that means we can sim-
ulate data at twice the real-time speed with 1 ms temporal
resolution.

2

0 20 40 60 80 100
2D Error (in % of the palm length)

0.0

0.2

0.4

0.6

0.8

1.0

2D
-P

CK
p

proposed AUC:0.77
no filtering AUC:0.75
no aug. AUC:0.70
33 ms LNES AUC:0.72
300 ms LNES AUC:0.72

(a) Removing filtering leads to a compara-
bly small quantitative decrease in performance
whereas removing augmentation has a significant
impact on real test data. LNES works well with
varying temporal window sizes with the proposed
100ms window achieving the best accuracy.

0 20 40 60 80 100
2D Error (in % of the palm length)

0.0

0.2

0.4

0.6

0.8

1.0

2D
-P

CK
p

proposed AUC:0.77
33 ms LNES AUC:0.72
33 ms EOI AUC:0.70
33 ms ECI AUC:0.69
33 ms ECI-S AUC:0.66

(b) With a temporal window size of 33ms, there
is less variation in the performance of the dif-
ferent event representations. Our 33ms LNES
still improves over the other event representa-
tions while being less accurate than the proposed
100ms LNES.

0 20 40 60 80 100
2D Error (in % of the palm length)

0.0

0.2

0.4

0.6

0.8

1.0

2D
-P

CK
p

proposed AUC:0.77
300 ms LNES AUC:0.72
100 ms EOI AUC:0.56
100 ms ECI AUC:0.52
100 ms ECI-S AUC:0.56

(c) When increasing the window size to 100ms,
the difference between LNES and the other rep-
resentations increases because the latter do not
keep any temporal information within the win-
dow. While their performance at 100ms is al-
ready significantly degraded, LNES still works
with very long windows like 300ms.

Figure 1. Quantitative ablation studies on real data. We plot the percentage of keypoints with an error lower than a given threshold. The
PCK curves correspond to the AUC values reported in Table 1 in the main paper.

Reference RGB (30 fps) Depth and Output Pose Reference RGB (30 fps) Depth and Output Pose Reference RGB (30 fps) Depth and Output Pose

Figure 2. Fast moving hands lead to corrupted depth maps on which depth-based methods, like Moon et al. [3], produce large errors. We
show the blurry RGB image for reference only as well as the input depth and the predicted 3D hand pose.

4.2. Event Camera Calibration

To reduce the domain gap between the simulated and real
event data, we used the event threshold value and the noise
event rate of our DAVIS240C event camera.

To calibrate the event threshold C, we shot sev-
eral sequences by moving an object (a checkerboard)
monotonously from one side to the other with different
speeds. We captured both the events {(ti, ui, pi)}Nevents

i=1

and instant intensity images {Ωj}
Nimages

j=1 simultaneously.
By moving monotonously from one side to the other side,
we eliminate cases when the event stream contains events
that cannot be explained by the intensity images, e.g., events
that cancel themselves between two consecutive intensity
images. To estimate the event threshold from the cap-
tured data, we use the following observation. According
to our camera model, if the camera emits N events in total,
then the intensity images would have the total log-intensity
change of ≈NC. Thus, C can be estimated by dividing the
total log-intensity change by the total number of events N .

Hence, we counted the total intensity change of the in-

stant intensity images ∆total as

∆total =

Nimages−1∑
i=1

| log(max{Ωt+1, ε})− log(max{Ωt, ε})|,

(7)
where ε = 10 is a constant added for numerical stability.
Then, we estimate C as

C ≈ ∆total/Nevents. (8)

For our event camera, we obtain C = 0.5–0.55.
To estimate the noise event rate, we shot the static

background and count the number of positive and nega-
tive recorded events. For our DAVIS240C, we estimate the
noise to be ≈2500 positive and ≈100 negative events per
second.

4.3. Dataset Format

The generated dataset consists of two files, i.e., the event
stream and the metadata stream. The event stream file for-
mat is tailored for the frame-by-frame event stream simu-
lation. It consists of blocks of four bytes: two bytes for x
coordinate, one byte for y coordinate and one byte for polar-
ity p. At the start, the timestamp is considered to be zero. A

3

Su
bj

ec
t1

Su
bj

ec
t2

Su
bj

ec
t3

Input Our Result Input Our Result Input Our Result

Figure 3. Additional results of EventHands on real event sequences captured with different subjects.

Input Our Result Input Our Result Input Our Result

Figure 4. Results of EventHands on real data where the hand is entering the frame from the bottom.

new frame is indicated by the polarity value p = 255, which
signals that the timestamp should be incremented by one
time step. We use the time step of 1/1000 of a second. The
file starts with a four-byte integer that specifies the number
N of metadata fields per each frame. Then, the stream starts
and it consists of 8N+2 byte blocks. The block contains N
eight-byte double-precision reals and two-byte magic. We
use N = 12 for six MANO articulation coefficients, three
components of the hand root translation vector, and three
components of the hand root rotation vector.

We also implement a high-speed C++/Python loader for
the proposed dataset format. It allows loading ∼8.6 · 105
simulated frames per second or ∼1.75 · 108 events per sec-
ond when using storage capable of 1000 MB/s read speeds.
With the fixed rate of 1000 simulated frames per second,
this amounts to loading 860 simulated seconds per second.
Thus, we are able to load a 45-hours-long dataset in just
three minutes.

4.4. Simulation Parameters

We next describe how we augment the simulation for
generating the event data. SMPL+H body shape β is drawn
from U [−2, 2]. Body position θ is drawn as follows. First,
we sample ξ ∼ U [−0.2, 0.2]. Then θ = ξ ⊙ g + o, where
g is the gain vector, o is the offset vector and ⊙ is the
component-wise multiplication operator.

For the dataset in which the arm comes from the top and
right edges, the gain is

g
(1)
i =

100, if i = 16 · 3 + 9,

40, if i = 16 · 3 + 10,

10, if i = 16 · 3 + 11,

40, if i = 16 · 3 + 15,

40, if i = 16 · 3 + 16,

40, if i = 16 · 3 + 17,

1, otherwise,

4

and the offset is

o
(1)
j =

0.2, if j = 13 · 3 + 5,

0.1, if j = 16 · 3 + 5,

1.4ϵ, if j = 16 · 3 + 9,

0.5, if j = 16 · 3 + 11,

0, otherwise,

where ϵ is sampled randomly and is either −1 or 1 with
equal probability. Global translation vector has (x, y) com-
ponents sampled from U [−0.3, 0.3]. The depth component
z is taken from U [−0.09, 0.09].

For the dataset in which the arm comes from the bottom
edge, the gain is

g
(2)
i =

100, if i = 16 · 3 + 9,

10, if i = 16 · 3 + 11,

40, if i = 16 · 3 + 15,

40, if i = 16 · 3 + 16,

40, if i = 16 · 3 + 17,

1, otherwise,

and the offset is

o
(2)
j =

−2.3, if j = 2,

0.2, if j = 13 · 3 + 5,

0.1, if j = 16 · 3 + 5,

1.4ϵ− 3.8, if j = 16 · 3 + 9,

0.5, if j = 16 · 3 + 11,

0, otherwise,

where ϵ is also chosen randomly and is either −1 or 1
with equal probability. Global translation vector has x
component drawn from U [−1.5,−0.9], y component taken
from U [−0.52, 0.08] and depth component z taken from
U [−0.09, 0.09].

The hand MANO articulation parameters are sampled
from U [−2, 2], whereas hand texture PCA coefficients are
chosen from N (0, 4I). Light directions are sampled uni-
formly from all possible directions and light intensities are
drawn from U [0.9, 1.1]. Finally, the background image is
drawn randomly from the collected set of nine background
images. The event generation threshold is drawn from
N (0.5, 0.0004).

References
[1] Roger Labbe. Kalman and bayesian filters in python. https:

//elec3004.uqcloud.net/2015/tutes/Kalman_
and_Bayesian_Filters_in_Python.pdf, 2014.
online, accessed on the 11 Dec. 2020. 2

[2] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun.
Shufflenet v2: Practical guidelines for efficient cnn archi-
tecture design. In European conference on computer vision
(ECCV), 2018. 2

[3] Gyeongsik Moon, Ju Yong Chang, and Kyoung Mu Lee. V2v-
posenet: Voxel-to-voxel prediction network for accurate 3d
hand and human pose estimation from a single depth map. In
Computer Vision and Pattern Recognition (CVPR), 2018. 2, 3

[4] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In Computer Vision and Pat-
tern Recognition (CVPR), 2018. 2

[5] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014. 2

[6] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon
Shlens, and Zbigniew Wojna. Rethinking the inception archi-
tecture for computer vision. In Computer Vision and Pattern
Recognition (CVPR), 2016. 2

[7] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,
Mark Sandler, Andrew Howard, and Quoc V Le. Mnasnet:
Platform-aware neural architecture search for mobile. In Com-
puter Vision and Pattern Recognition (CVPR), 2019. 2

5

https://elec3004.uqcloud.net/2015/tutes/Kalman_and_Bayesian_Filters_in_Python.pdf
https://elec3004.uqcloud.net/2015/tutes/Kalman_and_Bayesian_Filters_in_Python.pdf
https://elec3004.uqcloud.net/2015/tutes/Kalman_and_Bayesian_Filters_in_Python.pdf

