Supplementary Material How Shift Equivariance Impacts Metric Learning for Instance Segmentation

Josef Lorenz Rumberger^{*1,2}, Xiaoyan Yu^{*1,3}, Peter Hirsch^{*1,3}, Melanie Dohmen^{*1,2}, Vanessa Emanuela Guarino^{*1,3}, Ashkan Mokarian¹, Lisa Mais¹, Jan Funke⁴, Dagmar Kainmueller¹

¹ Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC),

Berlin, Germany, {firstnames.lastname}@mdc-berlin.de

² Charité University Medicine, Berlin, Germany

³ Humboldt-Universität zu Berlin, Faculty of Mathematics and Natural Sciences, Berlin, Germany ⁴ HHMI Janelia Research Campus, Ashburn, VA, USA

1. Examples for equality of U-Net functions u

Example 1: For a U-Net with identity convolutions, weights 0 for skip connections, and fixed upsampling, functions u that merely pass the value of a bottleneck pixel through to the output (cf. Fig. 1 in the main paper) are absolute-equal, yet relative-distinct.

Example 2a: For a U-Net with output tile size w = 1 (i.e. a single output pixel per tile), employed in a sliding-window fashion (cf. Sec. 2.1 in the main paper), all functions u are relative-equal, yet absolute-distinct.

Example 2b: For a U-Net with pooling factor f = 1 (i.e. no pooling and thus full shift equivariance), all functions u are relative-equal, yet absolute-distinct.

2. Proof of Lemma 1, Part II

An operator F operating on images I is *shift equivariant to image shifts* t iff shifting any input image I by t causes an equal or proportional shift t' in the function's output, i.e. $\forall I \ \forall x : T_{t'}(F(I))(x) = F(T_t(I))(x)$. In case t = t', we call F shift equivariant to input shifts t. In case $t \neq t'$, we call F shift equivariant to input shifts t at output shifts t'. In the following, we prove that any U-Net with l pooling layers and pooling factor f is shift equivariant to image shifts $f^l t$, $t \in \mathbb{Z}$. Without loss of generality, we consider one-dimensional, one-channel input images, and one-channel feature maps throughout. A U-Net is composed of an encoder path and a decoder path:

Encoder Path. An encoder block is composed of a number of conv+ReLU layers. We refer to the function implemented by the i-th encoder block as E_i . The output of E_i is passed through a max pooling layer, referred to as MP_i . We refer to the composition of E_i and MP_i as EMP_i . The convolution operator F_{conv} (stride=1) is commonly defined as $F_{conv}(g)(x) = (g \star h)(x) = \sum_{m \in \mathbb{Z}} g(m)h(m-x)$ (see e.g. [1]), and well-known and easily shown to be shift equivariant to any shifts t:

$$F_{conv}(T_t(g))(x) = \sum_{m \in \mathbf{Z}} g(m-t)h(m-x)$$

$$= \sum_{m' \in \mathbf{Z}} g(m')h(m'+t-x)$$

$$= \sum_{m' \in \mathbf{Z}} g(m')h(m'-(x-t))$$

$$= T_t(F_{conv}(g))(x)$$

(1)

*equal contribution

The same holds for the ReLU operator: $ReLU(T_t(g))(x) = max(0, T_t(g)(x)) = max(0, g(x - t)) = T_t(ReLU(g))(x)$. Compositions of shift equivariant operators are also shift equivariant, hence E_i is shift equivariant to any input shifts t. To analyze MP_i , we break it down into the max pooling operator $\psi_f(g)(x) := max\{g(x + i) \mid i \in \{0, ..., f - 1\}\}$ with kernel size f, and the sub-sampling operator $s_f(g)(x) := g(fx)$ at stride f. Analogous to ReLU, ψ_f is shift equivariant to any shift t,

$$\psi_f(T_t(g))(x) = \max\{T_t(g)(x+i) \mid i \in \{0, ..., f-1\}\}$$

= $\max\{g(x+i-t) \mid i \in \{0, ..., f-1\}\}$
= $T_t(\psi_f(g))(x),$ (2)

while $T_t(s_f(g))(x) = s_f(T_{ft}(g))(x)$, i.e. s_f is shift equivariant to input shifts ft at proportional shifts t of the output. With this we get

$$EMP_{i}(T_{ft}(g))(x) = s_{f}(\psi_{f}(E_{i}(T_{ft}(g))))(x)$$

= $s_{f}(T_{ft}(\psi_{f}(E_{i}(g))))(x)$
= $T_{t}(s_{f}(\psi_{f}(E_{i}(g))))(x)$
= $T_{t}(EMP_{i}(g))(x),$ (3)

i.e., an encoder block with max pooling with downsampling factor f is shift equivariant to input shifts ft at proportional output shifts t. Overall, a general encoder path E employs l downsampling operations with factors $f_1, ..., f_l$. Shift equivariance proportionality factors multiply when composing operators, hence the encoder path is shift equivariant to input shifts $t \prod_{i=1}^{l} f_i$ at output shifts t. In the family of U-Nets we consider, $f_i = f_j$ for all i, j, yielding shift equivariance to input shifts tf^l at output shifts t: $E(T_{tf^l}(I))(x) = T_t(E(I))(x)$.

Decoder Path. The decoder path is composed of decoder blocks D_i , whose output is passed through respective upsampling layers, referred to as UP_i . A decoder block has the same form as an encoder block, i.e. it consists of a number of conv+ReLU layers, and is thus shift equivariant. We refer to the composition of D_i and UP_i as DUP_i . Upsampling is either *learnt*, i.e. performed via up-convolution with trainable kernel function p(x), with kernel size = stride = f (also called upsampling factor), or performed via nearest neighbor interpolation. We treat both in one go, as the latter is a special case of the former with fixed kernel function $p(x) \equiv 1$. We can express the up-convolution operator UP_i with upsampling factor f as $UP_i(g)(x) = (g * p)(x) = \sum_{m \in \mathbf{Z}} g(m)p(x - fm)$. Concerning its shift equivariance,

$$UP_{i}(T_{t}(g))(x) = \sum_{m \in \mathbf{Z}} g(m-t)p(x-fm)$$

= $\sum_{m' \in \mathbf{Z}} g(m')p(x-f(m'+t))$
= $\sum_{m' \in \mathbf{Z}} g(m')p((x-ft) - dm')$
= $T_{tf}(UP_{i}(g))(x),$ (4)

i.e., upsampling with factor f is shift equivariant to input shifts t at output shifts ft. Thus a decoder block with subsequent upsampling layer, DUP_i , is also shift equivariant to input shifts t at output shifts ft: $DUP_i(T_t(g))(x) = T_{ft}(DUP_i(g))(x)$. Concerning the input to DUP_i , at the bottleneck level i = l, this is the output of EMP_l . Concerning shift equivariance of their composition $U_l := DUP_l \circ EMP_l$, assuming equal down- and upsampling factors f, we get

$$U_{l}(T_{ft}(g))(x) = DUP_{l}(EMP_{l}(T_{ft}(g)))(x)$$

$$= DUP_{l}(T_{t}(EMP_{l}(g)))(x)$$

$$= T_{ft}(DUP_{l}(EMP_{l}(g)))(x)$$

$$= T_{ft}(U_{l}(g))(x),$$

(5)

i.e., U_l is shift invariant to shifts ft. For i < l, the input to DUP_i is a multi-channel image formed by concatenating the output of DUP_{i+1} and the output of encoder block E_{i+1} . Refering to the composition of all U-Net blocks up to a block B as \tilde{B} , we can write the input to DUP_i as $(T_{\Delta x_{i+1}}(\tilde{E}_{i+1}(I)), D\tilde{U}P_{i+1}(I))$. Here, Δx_{i+1} is the shift required to centrally align $\tilde{E}_{i+1}(I)$ and $D\tilde{U}P_{i+1}(I)$, as $D\tilde{U}P_{i+1}(I)$ is of size smaller or equal than $\tilde{E}_{i+1}(I)$. All Δx_i are fixed for a given architecture, and hence image concatenation is shift equivariant: $(T_{\Delta x_i}(T_t(g)), T_t(q))(x) = T_t((T_{\Delta x_i}(g), q))(x)$. Consequently, just

like DUP_l , for i < l, DUP_i is shift equivariant to input shifts t at output shifts ft. Furthermore, as proportional shift equivariance factors multiply when composing respective operators, analogous to $U_l := DUP_l \circ EMP_l$, we get that the composition of all blocks from EMP_i to DUP_i , $U_i := DUP_i \circ U_{i+1} \circ EMP_i$, is shift equivariant to shifts $f^{l-i+1}t$. In particular, U_1 is shift equivariant to shifts $f^l t$.

To yield the full U-Net function U, the outputs of U_1 and E_1 are concatenated into a multi-channel image, which is passed through a final shift invariant decoder block D_0 , $U := D_0((T_{\Delta x_1}E_1(I), U_1(I)))$ Thus U is equally shift equivariant as U_1 , i.e., the U-Net is shift equivariant to shifts $f^l t$. \Box

3. Quantitative Evaluation on Benchmark Data

BBBC006: The dataset is split into 691 training and 77 test images. Images contain on average 97 instances. We trained a U-Net with f = 2, l = 4, 16-d embeddings and discriminative loss with training tile size 148 and used two-fold cross-validation on the test data to tune hyperparameters.

DSB2018: The dataset is split into 380 training, 67 validation and 50 test images. Images contain on average 49 instances. We trained a U-Net with f = 2, l = 4, 16-d embeddings and discriminative loss with training tile size 68. Aside from the loss the same setup as in [3] is used.

nuclei3d: The dataset is split into 18 training, 3 validation and 7 test volumes. Volumes contain on average 537 instances. We trained a U-Net with f = 2, l = 3, 16-d embeddings and discriminative loss with training tile size 148. Aside from the loss the same setup as in [2] is used.

(a) Output tile size $148(>f^l)$, not cropped before stitching

(b) Output tile size cropped to $144(=n \cdot f^l)$ before stitching

(c) Gradient magnitude of predicted embeddings in (a) and (b)

Figure 1: Predicted embeddings of a U-Net (a) naively stitched without cropping and (b) cropped to $n \cdot f^l$ before stitching. Inconsistencies at the stitching boundaries are clearly visible in the (c) gradient magnitudes of the embeddings.

4. Zero padding leads to location awareness

(a) Receptive field large enough for full location awareness at given input image size

(b) Receptive field too small for full location awareness at given input image size

Figure 2: A U-Net with zero-padding yields location awareness also with nearest-neighbor upsampling, if (a) each output pixel has a unique receptive field that reaches the image boundary. Otherwise, for a constant input image, (b) some pixels will necessarily receive equal outputs. Showcase: l = 2, f = 2, input image $I \equiv 1$.

5. Practical Impact of Noise and Small Deformations

(c) Slight gaussian noise: No effect on stitching issues

(d) Elastic deformations on the input: No effect on stitching issues

Figure 3: (a) and (b): Slight image augmentations enable a U-Net to distinguish objects that are otherwise indistinguishable due to object spacing f^l . Showcase: l = 4, f = 2, learnt upsampling. (a) Slight Gaussian noise, and (b) elastic deformations, best viewed on screen with zoom. (c) and (d): However, image augmentations do not affect the issue of inconsistencies in a tile-and-stitch approach if output tiles are not cropped to edge length $n \cdot f^l$ before stitching. Showcase: l = 4, f = 2, inference output tile size $52 \neq n \cdot 2^4$.

References

- [1] Taco Cohen and Max Welling. Group equivariant convolutional networks. In *International Conference on Machine Learning*, pages 2990–2999, 2016. 1
- [2] Peter Hirsch and Dagmar Kainmueller. An auxiliary task for learning nuclei segmentation in 3d microscopy images. In *Medical Imaging with Deep Learning*, pages 304–321. PMLR, 2020. 3
- [3] Peter Hirsch, Lisa Mais, and Dagmar Kainmueller. PatchPerPix for instance segmentation. CoRR, 2020. 3