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1. Examples for equality of U-Net functions u
Example 1: For a U-Net with identity convolutions, weights 0 for skip connections, and fixed upsampling, functions u
that merely pass the value of a bottleneck pixel through to the output (cf. Fig. 1 in the main paper) are absolute-equal, yet
relative-distinct.
Example 2a: For a U-Net with output tile size w = 1 (i.e. a single output pixel per tile), employed in a sliding-window
fashion (cf. Sec. 2.1 in the main paper), all functions u are relative-equal, yet absolute-distinct.
Example 2b: For a U-Net with pooling factor f = 1 (i.e. no pooling and thus full shift equivariance), all functions u are
relative-equal, yet absolute-distinct.

2. Proof of Lemma 1, Part II
An operator F operating on images I is shift equivariant to image shifts t iff shifting any input image I by t causes an

equal or proportional shift t′ in the function’s output, i.e. ∀I ∀x : Tt′(F (I))(x) = F (Tt(I))(x). In case t = t′, we call F
shift equivariant to input shifts t. In case t ̸= t′, we call F shift equivariant to input shifts t at output shifts t′. In the following,
we prove that any U-Net with l pooling layers and pooling factor f is shift equivariant to image shifts f lt, t ∈ Z. Without
loss of generality, we consider one-dimensional, one-channel input images, and one-channel feature maps throughout. A
U-Net is composed of an encoder path and a decoder path:
Encoder Path. An encoder block is composed of a number of conv+ReLU layers. We refer to the function implemented by
the i-th encoder block as Ei. The output of Ei is passed through a max pooling layer, referred to as MP i. We refer to the
composition of Ei and MP i as EMP i. The convolution operator Fconv (stride=1) is commonly defined as Fconv(g)(x) =
(g ⋆ h)(x) =

∑
m∈Z g(m)h(m− x) (see e.g. [1]), and well-known and easily shown to be shift equivariant to any shifts t:

Fconv(Tt(g))(x) =
∑
m∈Z

g(m− t)h(m− x)

=
∑
m′∈Z

g(m′)h(m′ + t− x)

=
∑
m′∈Z

g(m′)h(m′ − (x− t))

= Tt(Fconv(g))(x)

(1)
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The same holds for the ReLU operator: ReLU(Tt(g))(x) = max(0, Tt(g)(x)) = max(0, g(x − t)) = Tt(ReLU(g))(x).
Compositions of shift equivariant operators are also shift equivariant, hence Ei is shift equivariant to any input shifts t. To
analyze MP i, we break it down into the max pooling operator ψf (g)(x) := max{g(x+ i) | i ∈ {0, ..., f − 1}} with kernel
size f , and the sub-sampling operator sf (g)(x) := g(fx) at stride f . Analogous to ReLU, ψf is shift equivariant to any shift
t,

ψf (Tt(g))(x) = max{Tt(g)(x+ i) | i ∈ {0, ..., f − 1}}
= max{g(x+ i− t) | i ∈ {0, ..., f − 1}}
= Tt(ψf (g))(x),

(2)

while Tt(sf (g))(x) = sf (Tft(g))(x), i.e. sf is shift equivariant to input shifts ft at proportional shifts t of the output. With
this we get

EMP i(Tft(g))(x) = sf (ψf (Ei(Tft(g))))(x)

= sf (Tft(ψf (Ei(g))))(x)

= Tt(sf (ψf (Ei(g))))(x)

= Tt(EMP i(g))(x),

(3)

i.e., an encoder block with max pooling with downsampling factor f is shift equivariant to input shifts ft at proportional out-
put shifts t. Overall, a general encoder path E employs l downsampling operations with factors f1, ..., fl. Shift equivariance
proportionality factors multiply when composing operators, hence the encoder path is shift equivariant to input shifts t

∏l
1 fl

at output shifts t. In the family of U-Nets we consider, fi = fj for all i, j, yielding shift equivariance to input shifts tf l at
output shifts t: E(Ttf l(I))(x) = Tt(E(I))(x).
Decoder Path. The decoder path is composed of decoder blocks Di, whose output is passed through respective upsampling
layers, referred to as UP i. A decoder block has the same form as an encoder block, i.e. it consists of a number of conv+ReLU
layers, and is thus shift equivariant. We refer to the composition of Di and UP i as DUP i. Upsampling is either learnt,
i.e. performed via up-convolution with trainable kernel function p(x), with kernel size = stride = f (also called upsampling
factor), or performed via nearest neighbor interpolation. We treat both in one go, as the latter is a special case of the
former with fixed kernel function p(x) ≡ 1. We can express the up-convolution operator UP i with upsampling factor f as
UP i(g)(x) = (g ∗ p)(x) =

∑
m∈Z g(m)p(x− fm). Concerning its shift equivariance,

UP i (Tt(g)) (x) =
∑
m∈Z

g(m− t)p(x− fm)

=
∑
m′∈Z

g(m′)p(x− f(m′ + t))

=
∑
m′∈Z

g(m′)p((x− ft)− dm′)

= Ttf (UP i (g)) (x),

(4)

i.e., upsampling with factor f is shift equivariant to input shifts t at output shifts ft. Thus a decoder block with subsequent
upsampling layer, DUP i, is also shift equivariant to input shifts t at output shifts ft: DUP i(Tt(g))(x) = Tft(DUP i(g))(x).
Concerning the input to DUP i, at the bottleneck level i = l, this is the output of EMP l. Concerning shift equivariance of
their composition Ul := DUP l ◦ EMP l, assuming equal down- and upsampling factors f , we get

Ul(Tft(g))(x) = DUP l(EMP l(Tft(g)))(x)

= DUP l(Tt(EMP l(g)))(x)

= Tft(DUP l(EMP l(g)))(x)

= Tft(Ul(g))(x),

(5)

i.e., Ul is shift invariant to shifts ft. For i < l, the input to DUP i is a multi-channel image formed by concatenating the
output of DUP i+1 and the output of encoder block Ei+1. Refering to the composition of all U-Net blocks up to a block B as
B̃, we can write the input to DUP i as (T∆xi+1(Ẽi+1(I)), ˜DUP i+1(I)). Here, ∆xi+1 is the shift required to centrally align
Ẽi+1(I) and ˜DUP i+1(I), as ˜DUP i+1(I) is of size smaller or equal than Ẽi+1(I). All ∆xi are fixed for a given architecture,
and hence image concatenation is shift equivariant: (T∆xi

(Tt(g)), Tt(q)) (x) = Tt ((T∆xi
(g), q)) (x). Consequently, just



like DUP l, for i < l, DUP i is shift equivariant to input shifts t at output shifts ft. Furthermore, as proportional shift
equivariance factors multiply when composing respective operators, analogous to Ul := DUP l ◦ EMP l, we get that the
composition of all blocks from EMP i to DUP i, Ui := DUP i ◦ Ui+1 ◦ EMP i, is shift equivariant to shifts f l−i+1t. In
particular, U1 is shift equivariant to shifts f lt.

To yield the full U-Net function U , the outputs of U1 and E1 are concatenated into a multi-channel image, which is passed
through a final shift invariant decoder block D0, U := D0((T∆x1E1(I), U1(I))) Thus U is equally shift equivariant as U1,
i.e., the U-Net is shift equivariant to shifts f lt.

3. Quantitative Evaluation on Benchmark Data
BBBC006: The dataset is split into 691 training and 77 test images. Images contain on average 97 instances. We trained a U-
Net with f =2, l=4, 16-d embeddings and discriminative loss with training tile size 148 and used two-fold cross-validation
on the test data to tune hyperparameters.
DSB2018: The dataset is split into 380 training, 67 validation and 50 test images. Images contain on average 49 instances.
We trained a U-Net with f=2, l=4, 16-d embeddings and discriminative loss with training tile size 68. Aside from the loss
the same setup as in [3] is used.
nuclei3d: The dataset is split into 18 training, 3 validation and 7 test volumes. Volumes contain on average 537 instances.
We trained a U-Net with f = 2, l= 3, 16-d embeddings and discriminative loss with training tile size 148. Aside from the
loss the same setup as in [2] is used.

(a) Output tile size 148(> f l),
not cropped before stitching

(b) Output tile size cropped to
144(= n · f l) before stitching

(c) Gradient magnitude of predicted embeddings
in (a) and (b)

Figure 1: Predicted embeddings of a U-Net (a) naively stitched without cropping and (b) cropped to n · f l before stitching.
Inconsistencies at the stitching boundaries are clearly visible in the (c) gradient magnitudes of the embeddings.

4. Zero padding leads to location awareness

(a) Receptive field large enough for full location awareness at
given input image size

(b) Receptive field too small for full location awareness at
given input image size

Figure 2: A U-Net with zero-padding yields location awareness also with nearest-neighbor upsampling, if (a) each output
pixel has a unique receptive field that reaches the image boundary. Otherwise, for a constant input image, (b) some pixels
will necessarily receive equal outputs. Showcase: l = 2, f = 2, input image I ≡ 1.



5. Practical Impact of Noise and Small Deformations

(a) Slight gaussian noise added to the input: Instances distinguished despite object spacing f l

(b) Elastic deformations: Instances distinguished despite object spacing f l

(c) Slight gaussian noise: No effect on stitching issues (d) Elastic deformations on the input: No effect on stitching issues

Figure 3: (a) and (b): Slight image augmentations enable a U-Net to distinguish objects that are otherwise indistinguishable
due to object spacing f l. Showcase: l = 4, f = 2, learnt upsampling. (a) Slight Gaussian noise, and (b) elastic deformations,
best viewed on screen with zoom. (c) and (d): However, image augmentations do not affect the issue of inconsistencies in
a tile-and-stitch approach if output tiles are not cropped to edge length n · f l before stitching. Showcase: l = 4, f = 2,
inference output tile size 52 ̸= n · 24.
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