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1. Image Collection and Statistics
We described the image collection procedure from com-

pound biomedical figures in the main paper. The overall
procedure involved automatic extraction of compound fig-
ures from documents followed by manual cropping of im-
ages. Figure 1 shows a sample compound figure and its
decomposition. Furthermore, there is a significant varia-
tion in the number of images extracted from each document.
Figure 2 shows the frequency of images extracted per doc-
ument. Finally, images in BioFors have a wide range of
dimensions. Figure 3 shows a scatter-plot of BioFors image
dimensions as compared to two other natural-image foren-
sic datasets, Columbia [7] and COVERAGE [10].

Compound Figure Subfigures Images

Figure 1. We crop compound biomedical figures in two stages: 1)
crop sub-figures and 2) crop images from sub-figures. Synthetic
images such as charts and plots are filtered.

2. Orientation
Duplicated regions in BioFors may have an orientation

difference. These differences may occur between dupli-
cated regions across two images (external duplication de-
tection (EDD) task) or within an image (internal duplica-
tion detection (IDD) task). We found five major categories
of differing orientation: 0◦, 90◦, 180◦, horizontal and ver-
tical flip. Figure 4 shows the frequency of each orientation
between duplicated regions.

3. Baseline for CSTD
Existing forgery detection methods are not specifically

designed to detect cuts/sharp transitions in images. The ab-
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Figure 2. Distribution of images extracted from documents. The
distribution peaks at 25 images from most documents. The right-
most entry has 219 images from one document.
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Figure 3. BioFors images have much higher variation in dimension
compared to two popular image forensic datasets.

sence of diverse detection methods prompted us to train
a simple convolutional neural network (CNN) baseline
trained on synthetic manipulations in pristine blot/gel im-
ages from BioFors. Figure 5 shows the CNN architecture.
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Figure 4. Frequency of differing orientations between duplicated
regions in EDD and IDD tasks.
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Figure 5. Our baseline CNN architecture. Padding ensures the
same height and width for input image and output mask.

4. Synthetic Data Generation
Image forensic datasets usually do not have sufficient

samples to train deep learning models. Previous works
[11, 12] created suitable synthetic manipulations in natu-
ral images for model pre-training. The synthetic manipu-
lations were created by extracting objects from images and
pasting them in the target image with limited data augmen-
tation such as rotation and scale change. Similar to previ-
ous works, we created suitable synthetic manipulations in
biomedical images corresponding to each task for training
and validation. However, biomedical images do not have
well defined objects and boundaries and manipulated re-
gions are created with rectangular patches. Manipulation
process for each task is discussed ahead.
External Duplication Detection (EDD): Corresponding to
the two possible sources of external duplication, we cre-
ate manipulations by 1) Cropping two images with over-
lapping regions from a source image and 2) Splicing i.e.
copy-pasting rectangular patches from source to target im-
age. Manipulations of both types are shown in Figure 6. We
generate pristine, spliced and overlapped samples in a 1:1:1
ratio. Images extracted with overlapping regions are resized
to 256x256 image dimensions.
Internal Duplication Detection (IDD): Internal duplica-
tions are created with a copy-move operation within an im-
age. Rectangular patches of random dimensions are copy-
pasted within the same image. Figure 7 shows samples.

Manipulated Image Pairs Ground Truth Masks

(a)

(b)

Figure 6. Synthetic manipulations in image pairs created using (a)
overlapping image regions and (b) spliced image patches.

Figure 7. Internal duplications created with copy-move operations.

Synthetically Manipulated Image Ground Truth Mask

Figure 8. Synthetic cut/sharp transitions created in blot/gel images.

Cut/Sharp-Transition Detection (CSTD): We simulated
synthetic manipulations by randomly splitting an image
along two horizontal or vertical lines in the image and re-
joining the image. The line of rejoining represents a syn-
thetic cut or sharp transition and is used for training. Figure
8 shows synthetic CSTD manipulations.

5. Experiment Details
We list the hyper-parameter and finetuning details of

baselines corresponding to each task.
Keypoint-Descriptor: We implemented classic image
matching algorithm using keypoint-descriptor based meth-
ods such as SIFT, ORB and BRIEF. Keypoints are matched
using kd-tree and a consistent homography is found using
RANSAC to remove outlier matches. A rectangular bound-
ing box is created around the furthest matched keypoints.
We keep a threshold of minimum 10 matched keypoints to
consider an image pair to be manipulated.
DenseField: We evaluated DenseField [4] on IDD task
with three reported transforms - zernike moments (ZM),
polar cosine transform (PCT) and fourier-mellin transform
(FMT). ZM and PCT are evaluated with polar sampling
grid. Feature length for ZM, PCT and FMT are 12, 10 and
25. Since DenseField is a copy-move detection algorithm,



Method
Microscopy Blot/Gel Macroscopy FACS Combined

Image Pixel Image Pixel Image Pixel Image Pixel Image Pixel

SIFT [6] 8.48% 5.82% 9.37% 11.74% 6.98% 10.52% 6.09% 2.32% 8.18% 5.83%
ORB [8] 30.48% 28.56% 5.97% 12.45% 9.87% 19.34% 22.53% 8.86% 20.66% 21.47%
BRIEF [2] 27.42% 25.59% 3.74% 9.74% 13.07% 16.22% 20.09% 9.33% 18.22% 18.58%
DF - ZM [4] 42.00% 42.08% 15.42% 19.17% 27.48% 25.82% 54.17% 50.24% 27.06% 32.46%
DMVN [11] 16.40% 31.54% 18.61% 42.07% 10.29% 21.78% 8.94% 18.85% 16.31% 27.55%
Table 1. F1 scores for external duplication detection (EDD) task. The scores correspond to the experiments in main document.

Method
Microscopy Blot/Gel Macroscopy Combined

Image Pixel Image Pixel Image Pixel Image Pixel

DF - ZM [4] 74.07% 12.04% 52.46% 43.99% 53.33% 38.95% 56.10% 30.48%
DF - PCT [4] 74.07% 12.45% 51.97% 46.02% 70.59% 40.03% 57.31% 31.90%
DF - FMT [4] 58.33% 9.94% 50.00% 38.53% 49.18% 39.84% 50.62% 27.74%
DCT [5] 16.33% 3.50% 28.57% 17.06% 23.53% 15.53% 23.39% 10.35%
DWT [1] 25.97% 7.53% 40.00% 25.73% 63.16% 22.16% 37.04% 16.23%
Zernike [9] 17.95% 3.94% 34.78% 18.45% 42.86% 13.49% 28.99% 11.13%
BusterNet [12] 13.99% 13.38% 27.33% 4.57% 24.14% 14.94% 30.25% 6.04%

Table 2. F1 scores for external duplication detection (EDD) task. The scores correspond to the experiments in main document.

it expects a single image input. For evaluation on EDD task,
we concatenated image pairs along the column axis to form
a single input and used the best reported transform (ZM).
DMVN: The model is finetuned on synthetic data using
adam optimizer with a learning rate of 1e-5, batch size 16
and binary crossentropy loss. The model has two outputs:
1) binary mask prediction and 2) image level forgery classi-
fication. We found fine-tuning to be unstable for joint train-
ing of both outputs. We set image classification loss weight
to zero, tuning only the pixel loss. For image level classifi-
cation we used the protocol similar to BusterNet [12]. Post-
processing by removing stray pixels with less than 10% of
image area improved image classification performance.
BusterNet: We finetune BusterNet [12] on synthetic data
using adam optimizer with a learning rate of 1e-5, batch size
of 32 and categorical-crossentropy loss. BusterNet predicts
a 3-channel mask to identify source, target and pristine pix-
els. Since we do not need to discriminate between source
and target pixels, we consider both classes as manipulated.
Block Feature Matching: Discrete cosine transform
(DCT), discrete wavelet transform (DWT) and Zernike fea-
tures are matched with a block size of 16 pixels and mini-
mum euclidean distance of 50 pixels between two matched
blocks using the CMFD algorithm reported in [3].
ManTraNet: We finetuned the model using adam optimizer
with learning rate of 1e-3, batch size of 32 with gradient
accumulation and binary-crossentropy loss. Since, cuts and
transitions have thin pixel slices which can be distorted by
resizing, we use images with original dimension.
Baseline CNN: We trained the CNN using adam optimizer
with learning rate of 1e-3, mean squared error loss and batch
size of 10.

6. Alternate Metric: F1 score
Table 1 and 2 report F1 scores for EDD and IDD tasks re-

spectively. The experiments are identical to those reported
in the main document, but with F1 scores.

7. Sample Predictions
Prediction samples for EDD, IDD and CSTD tasks re-

spectively in Figures 9,10 and 11. For EDD we show pre-
dictions from ORB [8] and DMVN [11]. Samples for IDD
include DCT [5], DenseField [4], DWT [1], Zernike [9] and
BusterNet [12] baselines. Similarly, CSTD predictions are
from ManTraNet [13] and our cnn baseline.

8. Ethical Considerations
We have used documents from PLOS to curate BioFors,

since it is open access and can be used for further research
including modification and distribution. However, the pur-
pose of BioFors is to foster the development of algorithms
to flag potential manipulations in scientific images. Bio-
Fors is explicitly not intended to malign or allege scientific
misconduct against authors whose documents have been
used. To this end, there are two precautions (1) We have
anonymized images by withholding information about the
source publications. Since scientific images have abstract
patterns, matching documents from the web with BioFors
images is a significant hindrance to the identification of
source documents. (2) Use of pristine documents and doc-
uments with extenuating circumstances such as citation for
duplication and justification. As a result, inclusion of a doc-
ument in BioFors does not assure scientific misconduct.
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Figure 9. Rows of image pairs and corresponding predicted masks. The text in sample (d) misleads the prediction from both models.

Image DCTZernike DF - ZM BusterNetGT Mask DWT
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Figure 10. Rows of images and forgery detection predictions. There is significant variation in prediction across models. Rotated predictions
in sample (a) are not identified by any model.
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Figure 11. Predictions from ManTraNet and baseline CNN. It is evident that current forensic models are not suitable for the CSTD task.
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