
Supplemental Material
Tune it the Right Way: Unsupervised Validation of Domain Adaptation

via Soft Neighborhood Density

We first describe the details of the experiments. Then we
show additional experimental results and analysis.

1. Experimental Details

Dataset. In partial DA setting using OfficeHome, we
choose the first 25 classes (in alphabetic order) as the target
private classes following [1]. In the experiments using Do-
mainNet, we choose 126 classes out of 345 classes follow-
ing [6]. This is to remove classes that include some outlier
objects or objects of multiple classes.

Implementation. As we mention in the main pa-
per, we utilize official implementations to perform experi-
ments. Specifically, we use the following implementations;
NC [7] 1, CDAN [4] 2, MCC [3] 3, AdaptSeg [9] 4, and
ADVENT [10] 5. We employ the configurations used by
these implementations and tune the hyper-parameters de-
scribed in the main paper. We will publish our implementa-
tion including these code.

For NC [7], we tune the temperature parameter (Eq. 4
and 5 in [7]) used to compute similarity distribution. We
multiple the τ with [0.5, 0.8, 1.0, 1.5] to find a optimal one.

Semantic Segmentation. We describe the detail of an
experiment on semantic segmentation. First, we aim to tune
a weight of trade-off between the source classification loss
and domain confusion loss in this experiment.

In AdaptSegNet [9], the implementation defines two
weights for two domain classifiers individually. We aim to
tune a weight called lambda-adv-target1. We aim to select
the hyper-parameters from (λ = 5.0 × 10−4, 3.0 × 10−4, 2.0
× 10−4, 1.0 × 10−4, 1.0 × 10−3, with 2.0 × 10−4 as its de-
fault setting). Similarly, for ADVENT [10], we aim to pick
a trade-off parameter called LAMBDA-ADV-MAIN from (λ
= 5.0 × 10−2 , 1.0 × 10−2, 1.0 × 10−3, 5.0 × 10−4, and
1.0 × 10−4, with 1.0 × 10−2 as its default setting).

1https://github.com/VisionLearningGroup/DANCE
2https://github.com/thuml/CDAN
3https://github.com/thuml/

Versatile-Domain-Adaptation
4https://github.com/wasidennis/AdaptSegNet
5https://github.com/valeoai/ADVENT

To compute source risk, we utilize 1,000 training source
images as a source validation set and track mIoU over train-
ing iterations.

Toy Dataset. We utilize the implementation of
DANN [2] 6. We simply use their network architecture
and other configurations. We generate source data from
two Gaussian distributions with different means ((0,0) and
(5,5)), which we regard as two classes. Then, we obtain
target data by shifting the mean of one of the Gaussians.

We will also publish the implementation modified for our
experiment.

2. Analysis in Toy Dataset
Using the toy dataset, we show several characteristics of

SND. First, SND gets large if features have small within-
class variance compared to the distance between classes.
Second, SND outputs a large value when samples are gen-
erated from a single cluster.

SND and Within-class Variance. Soft Neighborhood
Density is designed to be large if the neighborhood sam-
ples are densely clustered, which means the feature variance
within each cluster is small. We aim to confirm the relation-
ship between SND and the within-class variance using the
toy dataset. As shown in Fig. A, we vary the variance of
the Gaussian distributions that generate data of two classes
while fixing their means. Note that we train and test a model
on the same distribution since our goal here is to observe the
behavior of SND for the different variance of features. The
right of Fig. A illustrates the result. As we expect, as the
variance is increased, SND gets smaller. The accuracy also
drops with the increase of the variance since the increase
makes many hard-to-classify samples.

SND and the Mode of the Data. In this experiment,
we investigate the relationship between SND and the num-
ber of clusters in the target. Note that we assume we have a
fixed number of target samples. As the number of clusters
gets smaller, more target samples get similar since the total
number of target samples is the same, and SND gets larger.

6https://github.com/GRAAL-Research/domain_
adversarial_neural_network
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Figure A: SND with respect to with-in class variance. Left (a)(b): Plots of changing the variance. We generate the data of two
classes from two Gaussians with different means. As we show in the plot, we increase the variance of them while fixing their
means. In this way, we observe the behavior of SND by the change of the feature density. Right: The change of SND and
accuracy with respect to the variance. Since the concentration degree of features decreases with the increase of the variance,
SND gets smaller with the increase.

Figure B: SND shows a large value for the data with a single
mode. Black: Target samples. Red: Source samples of class
0. Green: Source samples of class 1. Left: Target samples
are generated from 6 modes. Right: The same number of
target samples as the left are generated from a single mode.
SND of the right case is much larger than the left (7.49 vs
6.79).

Fig. B shows the result. In this experiment, we generate
target data (Black dots in Fig. B) by shifting the source dis-
tributions. In the left, we generate the target samples from
6 modes. In the right, the same number of target samples
are generated from a single-mode. SND of the right case is
much larger than that of the left (7.49 vs 6.79). If all target
samples are from the green class, then SND picks the better
model, but if they are actually from the red class, then SND
picks the worse model. The failure case is hard to avoid as
we discuss in Sec. 4.

3. Additional Results

We show results removed from our main paper due to
limited space.

Semantic Segmentation. Fig. C shows iteration ver-
sus mIoU and HPO criterion. SND performs better than
others on average in picking a better-adapted model (i.e.,
better target accuracy). Besides, we can observe that the
performance of segmentation models is sensitive to hyper-
parameters and training iterations.

Image Classification. Fig. D shows iteration ver-
sus accuracy and HPO criterion in image classification
experiments. We show results of Pseudo-labeling (PL),
CDAN [4], and MCC [3]. SND performs better than oth-
ers on average in picking a better-adapted model. Although
SND does not always select the best model, SND shows a
good correlation with accuracy. Entropy [5] shows a simi-
lar behavior to SND in PL, but behaves in a totally different
way in CDAN [4].

Results of MCD [8]. We conduct experiments on tun-
ing λ of MCD [8]. MCD is a popular approach that employs
the disagreement of two task-specific classifiers’ output. As
shown in the Table A, SND shows the best performance on
average. The result indicates the effectiveness of SND to
tune classifier discrepancy-based adaptation methods.

4. Additional Analysis

In this section, we show the detailed analysis of Soft
Neighborhood Density and other criterion.

Failure Case. In Sec 4.4 in the main paper, we ex-
plain possible failure cases: One can fool SND by training
a model to collapse all target samples into a single point. We
analyze the behavior of metrics in this setting. Specifically,
we train a network to correctly classify source samples and
to classify all unlabeled target samples into one class. We
call the models degenerated models. Note that we will not
employ this kind of a degenerated model in reality, but we
train the models just to see the behavior of metrics. We vary
λ for the target loss and compare the model with a non-
adapted model. Fig. E shows the accuracy and the behavior
of each metric. Since the model is trained to move all tar-
get samples to a single class, SND of degenerated models
gets much larger than that of a non-adapted model(Blue).
Other metrics are also not useful to identify the best model.
Interestingly, training degenerated models for target does
not decrease the accuracy of the source domain ((D) Source
Risk). This is probably because the representational power



Figure C: Semantic segmentation experiments (GTA5 to CityScaple) using AdaptSeg [9] and ADVENT [10]. Different
colors indicate different hyper-parameters. We validate the trade-off parameters between the source classification loss and
domain-confusion loss. SND has a good correlation with mIoU (ground truth performance).

Method Office OH CDA OH PDA AvgA2D W2A R2A A2P R2A A2P P2C
Lower Bound 78.8 62.8 61.9 66.4 69.2 67.3 37.2 63.4
Source Risk 81.3 67.3 62.4 68.0 69.3 68.4 42.2 65.6
DEV [11] 81.3 66.2 65.3 67.8 70.4 70.2 44.2 66.5
Entropy [5] 81.3 67.3 62.8 68.9 69.6 70.5 41.1 65.9
SND (Ours) 81.1 67.3 66.1 68.0 72.2 71.0 44.2 67.1
Upper Bound 84.7 68.9 66.9 68.9 72.2 71.3 45.3 68.3

Table A: Results of MCD [8]. SND performs the best on average.

of neural networks is rich enough to learn both the degen-
erated solution for the target and a good solution for the
source domain. One possible solution to this problem is to
compare the feature visualizations of the degenerated and
a non-adapted model. We leave further analysis to future
work.

Varying the Number of Target Samples. We show
analysis on the number of target samples necessary for Soft
Neighborhood Density. Then, in the OfficeHome Real to
Art closed adaptation, we employ NC [7] and reduce the
number of target samples used to calculate SND. We ran-
domly sample a certain proportion of the target domain and
compute SND. As shown in Fig. F, SND is not very sen-
sitive to the number of target samples. However, when we
sample a small number of samples (10% case), Soft Neigh-
borhood Density becomes a little unstable.

Temperature Parameter. We fix the temperature pa-
rameter (τ ) in Eq. 2 (See our main draft.) as 0.05 in all of
our experiments. Then, in the OfficeHome Art to Product
partial domain adaptation, we employ NC [7] and vary the
value of τ . In Fig. G, we compare the resulting curve of

SND with the accuracy curve. We have two observations:
SND is not very sensitive to the value of τ in selecting the
best model; but, the large temperature can make SND in-
consistent with the accuracy as the rightmost (τ = 0.1)
result indicates. This result indicates the necessity of the
temperature scaling. The scaling enables to ignore samples
embedded far away and to compute the density of neigh-
bors.

Soft Neighborhood Density Versus Validation with
a Few Labeled Target Samples. Some papers pro-
pose to utilize a few labeled target samples to tune hyper-
parameters. Although the way of tuning violates the as-
sumption of UDA, we investigate how well the criterion
is effective to pick a good hyper-parameter in Fig. H. We
employ the OfficeHome Real to Art closed adaptation us-
ing NC [7]. We increase the number of validation target
samples per class from 1 to 20 and compare the result with
SND. When the number of labeled target samples is small,
the validation accuracies are not stable and have high vari-
ance. To obtain stable and reliable results, we need to have
many labeled target samples whereas SND is an unsuper-



Figure D: Iteration versus accuracy and HPO criteria. Different colors indicate different hyper-parameters. To ease comparison between
accuracy and criteria, we flip the sign of criteria for Entropy, Source risk, and DEV.

Figure E: Analysis of a possible failure case. We train a network to correctly classify source samples and to classify all
unlabeled target samples into one class. Blue: A model trained only with source classification loss. Others: Models trained
to classify all target samples into a single class as well as trained to correctly classify source samples. Different colors indicate
different weights, λ, for the target loss. No metric is able to identify the non-adapted model.

Figure F: Analysis of the number of target samples used to compute SND. Different colors indicate different hyper-parameters. We vary
the number of target samples from 1

10
Nt to Nt, where Nt = 2427 is the number of target samples. We randomly sample the target samples.

To reduce variance of SND, we need to sample certain number of target samples.

vised criterion and shows reliable results. In a real applica-
tion, having a few labeled target samples may not be always
hard as stated in [6]. However, as this result indicates, mon-
itoring only the accuracy of few samples may not provide a
good model. Even in such a setting, combining SND will
be a good way to tune hyper-parameters.

Analysis of the Number of Source Validation Sam-
ples on Source Risk and DEV [11]. We further analyze
the cause of failures of source risk and DEV [11]. We in-
crease the number of labeled source samples and observe
the behavior of two criteria. We use the Amazon to DSLR
setting adapted by CDAN [4]. Even when we use a large



Figure G: Analysis of the temperature value used to compute SND. Different colors indicate different hyper-parameters. We vary the
value of the temperature of Eq. 2, i.e., 0.01, 0.03, 0.05 (default), 0.07, 0.1. The result indicates that SND shows consistent results across
different temperature values.

Figure H: Iteration versus accuracy and accuracy of the subset of a target domain. Different colors indicate different hyper-parameters.
We subsample labeled target samples (1, 3, 10, 20 samples per class) and compute the accuracy. Many number of labeled samples is
necessary to resemble the performance of a whole target domain.

Figure I: Analysis of the number of labeled source samples used for validation. We vary the number of the labeled source samples to
compute source risk and DEV risk. Different colors indicate different hyper-parameters. The result indicates that even though we increase
the number of source validation samples, the risks are not reliable to select hyper-parameters.

proportion of source samples as a validation set (We uti-
lize more than 10 % of source samples in the case of 10
labeled samples per class.), the two criteria are not well cor-
related with the accuracy of the target domain. This result
indicates the using source risk is limited to choosing good
hyper-parameters.
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