
Supplemental Material

A. Additional information about p(ϵ)
We provide a more formal definition of the probability p(ϵ).

Consider the empirical distribution p̂c(z) of n samples z1, . . . . , zn
from class c. This empirical distribution p̂ can be viewed by itself
as a random variable because it receives different values for differ-
ent instantiations of the random sample. p̂ is distributed over the
simplex ∆d where d is the dimension of the representation of z.
As a result, the ϵ-ball around µ̂c is also a random variable, since
different random samples yield different centroids and balls.

For any given ϵ, some of these balls may cover the true distri-
bution p and some may not, depending on the instances zi drawn.
p(ϵ) denotes the probability that such an ϵ-ball covers the true
distribution.

B. Tightness of the bound
We derive a lower bound of our loss and evaluate empirically

that the bounds are tight.
The lower bound is easily derived in a very similar way to the

derivation of the upper bound in Theorem 1 using the triangle
inequality. The bound has the following form

− logP (z|µc) ≥ − log
e−d(µ̂c,z)+2εc∑

z′∈Z e−d(µ̂c,z′)+2εcδ(z′,c)
(20)

We further estimated empirically the relative magnitude of
the bound gap |Eq.17−Eq.20|

Eq.18
, averaged over all samples. For

CIFAR100-LT it was 0.07, suggesting that the bounds are quite
tight in our case.

C. DRO-LT Sample count ϵ/
√
n

Given a set of samples zi, their mean is known to have a standard
deviation of σ/

√
n, where σ is the standard deviation of the sample

distribution p(z). In our case, σ is not known.
The DRO-LT variant that we call Sample count ϵ/

√
n, can

be viewed as assuming that all classes share the same standard
deviation of their sample distribution σ, which we tune as a hyper-
parameter, and the uncertainty about class centroid only varies by
the number of samples.

D. Loss trade-off parameter λ

Figure 6 quantifies the effect of the trade-off parameter λ
(Eq. 19) on the validation accuracy. The model was trained on
CIFAR100-LT with an imbalance factor of 100 and with our DRO-
LT loss (Learnable ε variant). It shows that training with DRO-LT
alone (λ = 0) is not enough and leads to poor accuracy. Combining
the robustness loss with a discriminative loss (cross-entropy) gives
the best results and suggests high-quality feature representations
and a discriminative classifier.

E. Robustness vs Performance
Figure 7 explores the effect of different uncertainty radii (ε) on

the validation accuracy of a model trained on CIFAR100-LT with

Figure 6: Validation accuracy of a model trained on
CIFAR100-LT (imbalance factor 100) with different loss
trade-off parameter (λ) values between standard cross-
entropy loss and our DRO-LT loss (Learnable ε variant).

Figure 7: Validation accuracy of a model trained on
CIFAR100-LT (imbalance factor 100) with different uncer-
tainty radius ε. The radius is set to be equal for all classes in
our shared ε variant.

an imbalance factor 100. The radius is set to be equal for all classes
in our DRO-LT loss (Shared ε variant). It shows that the accuracy
is maintained over a large range of ε values. Setting ε to very small
values nullifies the robustness and reduces accuracy. At the same
time, very large values of ε cause the worst-case centroid in the
ϵ-ball to be too far from µc making the bound too loose and again
reduces the accuracy.

F. More analysis on iNaturalist:

Table 5 compares DRO-LT with common long-tail methods on
iNaturalist with accuracy broken by class frequency: many-shot
(”Many”), medium-shot (”Med”) and few-show (”Few”). It shows
that improvement is larger at the head (Many) and tail (Few), but
relatively small for most of the classes in this dataset (Med). We
also provide the variance for 10 runs.



Figure 8: Accuracy of a nearest-centroid neighbor classifier when applied to convolutional layers 0, 10, 20, and 30 of a
ResNet-32. Our model narrows the accuracy gap between head and tail classes. The model was trained on CIFAR-100-LT
with an imbalance factor of 100. We compare a model trained with standard cross-entropy loss (solid line) and a model trained
with DRO-LT (dashed line) where the loss is applied to the last convolutional layer (conv30). We report balanced validation
accuracy for head classes (blue), medium classes (orange), and tail classes (green).

iNaturalist Many Med Few Acc

CE* 72.2 63.0 57.2 61.7
CB LWS 71.0 69.8 68.8 69.5
DRO-LT (ours)
Shared ε 78.2 70.6 64.7 69.0 ± 0.2
ε/
√
n 71.0 68.9 69.3 69.1 ± 0.2

Learned ε 73.9 70.6 68.9 69.7 ± 0.1

Table 5: Top-1 accuracy on long-tailed iNaturalist with ac-
curacy broken to Many-shot, Medium-shot and Few-shot
classes. Our approaches improves the performance on head
and tail classes.

G. Results for CIFAR-10-LT:
Table 6 compares our approach with common long-tail methods

on CIFAR-10-LT [6]. Our method outperforms all baselines.

H. Balancing latent representations
Here, we provide more analysis on the imbalance of latent

representation and compare our approach with a standard baseline.
Figure 8 shows the accuracy obtained with a nearest-centroid

classifier when applied to layers 0, 10, 20, and 30 of a ResNet-32.
We compare a model trained with standard cross-entropy loss (solid
line) and a model trained with DRO-LT (dashed line) where the loss
is applied to the last convolutional layer (conv30). We show that
our model narrows the accuracy gap between head classes (blue)
and tail classes (green), mostly in the last layer. This shows the
effectiveness of our approach on the latent representations of the
deep models and suggests that applying our loss to the rest of the
layers might result in a more balanced model overall.

CIFAR-10-LT Acc

CE 72.1
CB LWS [21] 73.5
LDAM DRW [6] 77.03
smDragon [35] 79.6

Learned ε (ours) 82.6

Table 6: Top-1 accuracy on long-tailed CIFAR-10 [6] with
imbalance factor 100.


