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S.1 Annotation collection and processing

Collection As described in Section 3.2, we collect anno-
tations using Amazon Mechanical Turk (AMT) for layer-
selective directions visualized in four classes (cottage,
kitchen, lake, medina). Instructions and an example task
are found in Supplementary Figure 1. We require workers
to be located in the U.S., with > 97% HIT acceptance rate
and > 100 HITs accepted. Workers were paid $0.06 per
annotation.

Normalization and post-processing We normalize di-
rection annotations before applying the method described in
Section 3.3 to decompose them into a vocabulary of prim-
itive visual concepts. We use pyspellchecker to automate
simple corrections, keeping the original string if there is
no word with an edit distance less than 3. Lemmatizing is
done with NLTK WordNetLemmatizer, discarding common
terms used to describe the setting (e.g., image, scene) or im-

Figure S1: Example annotation HIT. Annotators are shown
G(zi;y) (left) and G(zi + αdi,j ;y) (right) and asked to
write freeform text to describe the change from L to R. We
used a value of α = 6 for all experiments.

age class (e.g., house, lake). We then run a basic sentiment
analysis script to detect modifier words indicating whether
a concept is being added (e.g., appears, added, more) or
taken away (e.g., disappears, removed, less, goes from) in
an image transformation. This simple approach worked suf-
ficiently well to disambiguate different uses and positive vs.
negative sentiment of a concept.

S.2 Concept categorization

Here we provide a breakdown of concepts into three cat-
egories reflecting their use, as described in Section 3.2 of
the main paper. All concepts that appeared more than five
times in each image class were categorized by the authors,
as well as all concepts that appeared more than 20 times
across all four classes. We sort concepts into three broad
categories: object, including collective nouns and regions
of scenes (e.g., people, ocean, road), attribute (descriptors
of object and scene qualities, including color), and geometry
(scene- and object-level geometry, including size, perspec-
tive, and position). We report results in Table S1.

Attributes are the largest category of concepts in every
image class. Concepts describing color and light make up
50% of all attributes: 38% are chromatic color, 12% are re-
lated to light and dark. Attributes are also the most reliably
detected concepts, both automatically and by humans (see
Section S.3).

S.3 Concept detection accuracies

Here we report human and SVM accuracies in detecting
the addition of individual concepts to generated images.

Cottage Kitchen Lake Medina All classes

Object 35% 29% 24% 25% 32%
Attribute 48% 50% 54% 54% 48%

Geometry 17% 21% 22% 21% 20%

# of terms 178 140 184 139 152

Table S.1: Distribution of frequently used concepts across
three classes: names of objects, scene- and object-level ge-
ometry, and other attributes (such as color or lighting). This
shows terms that appear 5+ times within each class, and 20+
times across all classes.



Cottage Kitchen Lake Medina

tree 0.80 wall 0.13 water 0.53 alley 0.60
color 0.20 window 0.87 tree 0.93 wall 0.60

sky 0.53 cabinet 0.60 sky 0.73 people 0.73
building 0.20 color 0.67 cloud 0.73 color 0.67

grass 0.80 white 0.87 color 0.87 darker 0.93
green 1.00 lighter 0.80 blue 1.00 street 0.20

window 0.73 counter 0.53 darker 0.93 blue 0.87
darker 0.73 darker 0.93 green 0.87 sky 0.40

roof 0.40 brown 1.00 reflection 0.80 window 0.67
white 0.87 brighter 0.73 mountain 1.00 light 0.60
front 0.67 wood 0.87 land 0.73 brighter 0.53

red 0.67 floor 0.33 brighter 0.47 door 0.33
smaller 0.53 space 0.27 grass 0.87 white 0.87

snow 0.93 blue 1.00 background 0.33 red 0.80
angle 0.53 yellow 0.93 lighter 0.40 B&W 0.80
blue 0.80 smaller 0.53 building 1.00 yellow 1.00

B&W 1.00 angle 0.13 yellow 1.00 arch 1.00
larger 0.47 warmer 0.73 B&W 0.93 background 0.47
cloud 0.53 red 1.00 day 0.13 road 0.60

brown 0.67 table 0.13 sunset 0.93 wider 0.73

Average 0.65 0.65 0.76 0.67

Table S.2: Human accuracy detecting the 20 most frequent
concepts by category in Experiment 1. Chance is 0.25.
Black concepts are objects (including collective nouns and
larger scene regions, e.g. water), blue concepts are at-
tributes (adjectives, including colors), and green concepts
describe scene- and object-level geometry.

Human performance per concept. Experiment 1 (de-
scribed in Section 4.1 of the main paper) evaluated the gen-
eralizability of our vocabulary across Z by measuring hu-
man accuracy discriminating a target concept among three
distractors. Table S.2 reports mean accuracy across 15
workers per concept, for the 20 most frequent concepts in
each class. Mean human accuracy classifying attributes
(0.79, σ = .21) is higher than either objects (0.64, σ = .25 )
or geometry (0.47, σ = 0.17). All but one of the attributes
shown in Table S.2 describe chromatic color or light, which
we might expect to be more reliably discriminable across
images and observers.

SVM performance per concept. As described in Section
4.1, we replicated Experiment 1 using a linear SVM to dis-
tinguish the addition of a particular concept to images from
the addition of distractors. For the top 20 most frequent
concepts in each of the four classes, 64 z were randomly
sampled, and two classes of images were created to train
the SVM: G(z+d∗,y) where d∗ is the target concept, and
G(z+ dj ,y) where the dj are randomly sampled from the
other 19 concepts. 20% of images were held out for testing.

We report classification accuracy for the top 20 concepts
in all four classes in Table S3. The color of each concept
reflects its category (see Section S.2). Like in the human ex-
periment, mean SVM accuracy classifying attributes (0.83,
σ = 0.09) is higher than either objects (0.75, σ = 0.08) or
geometry (0.72, σ = 0.08).

Cottage Kitchen Lake Medina

tree 0.77 wall 0.73 water 0.73 alley 0.73
color 0.92 window 0.81 tree 0.81 wall 0.73

sky 0.77 cabinet 0.65 sky 0.65 people 0.73
building 0.77 color 0.85 cloud 0.85 color 0.85

grass 0.77 white 0.62 color 0.69 darker 1.00
green 0.73 lighter 0.88 blue 0.96 street 0.77

window 0.77 counter 0.50 darker 0.85 blue 0.92
darker 0.85 darker 0.95 green 0.95 sky 0.65

roof 0.73 brown 0.80 reflection 0.85 window 0.77
white 0.73 brighter 0.85 mountain 0.69 light 0.77
front 0.81 wood 0.81 land 0.62 brighter 0.85

red 0.85 floor 0.69 brighter 0.85 door 0.77
smaller 0.73 space 0.58 grass 0.85 white 0.81

snow 0.88 blue 0.81 background 0.69 red 0.85
angle 0.77 yellow 0.92 lighter 0.81 B&W 0.62
blue 0.77 smaller 0.77 building 0.88 yellow 0.88

B&W 0.88 angle 0.65 yellow 0.65 arch 0.62
larger 0.85 warmer 1.00 B&W 0.73 background 0.62
cloud 0.73 red 0.65 day 0.88 road 0.77

brown 0.96 table 0.77 sunset 0.85 wider 0.77

Average 0.80 0.76 0.79 0.77

Table S.3: SVM accuracy classifying 20 most frequent con-
cepts by category. The same color scheme is used as in
Table S.2. Chance is 0.50.

S.4 Generalization to BigGAN-ImageNet

Our method generalizes to BigGAN-ImageNet, as refer-
enced in the main paper. We include details in this section.
The generalizability of our approach suggests that it could
be used to characterize a given generator by the projection
of concepts salient to humans into the set of concepts the
model has learned.

Distilling visual concepts. We generate layer-selective
directions using the method described in Section 3.1 for 64
randomly selected z in two classes of BigGAN-ImageNet
that best resemble classes of BigGAN-Places: lakes (shared
by both datasets) and barns (similar to cottages). As in our
procedure for BigGAN-Places, 1280 layer-selective direc-
tions are found in each class. Annotations are then collected
on AMT, normalized, and post-processed using the proce-
dure described in Sections 3.2 and S.1. From the annotated
layer-selective directions, we use the method described in
Section 3.3 to distill visual concepts and associated direc-
tions in latent space. We find that 1198 unique terms are
used to describe barns, with 555 repeated at least once, and
867 unique terms are used to describe lakes, with 390 re-
peated at least once. Selected directions in both classes are
visualized in Supplementary Figure 2.

Concept evaluation. Following Section 4.1, we use a
forced choice task on AMT to evaluate the salience of vi-
sual concepts in the latent space of BigGAN-ImageNet and
their interpretability across different zi. Results across both
classes are shown in Supplementary Figure 3.



Figure S2: Example visual concepts found in the latent space of BigGAN-ImageNet using our method. The lake class is the
only visual scene class shared by both BigGAN-ImageNet and BigGAN-Places. For the same number of annotated directions
(1280), the number of distinct concepts in the lake class for BigGAN-ImageNet is < 75% of the number of distinct concepts
in the lake class for BigGAN-Places (see Section 3.2, Table 1). This could reflect less scene diversity in comparable ImageNet
classes due to less training data.

Figure S3: Task accuracies for concepts computed across
z, workers, and class. (a) Accuracies for concepts that ap-
peared more than 20 times in the annotation dataset. Some
concepts (including color changes like green, gray, blue,
black and white) are reliably recognized across most z,
while others (such as leaf and roof ) are not recognized with
accuracy above chance. (b) Histogram of concept accura-
cies across all concepts. The dotted vertical line shows the
accuracy of random guessing (0.25).

Using the procedure described in Section 4.1 and visual-
ized in Appendix C, AMT workers are recruited to identify
each concept within a set of distractors. Specifically, for
each concept c∗ and its distilled direction d∗, we sample a
novel z from the Z latent space as well as three distractor
directions {d1,d2,d3} sampled uniformly at random from
the remaining directions. Workers are shown an initial im-
age G(z;y) and four modified images G(z + αdi;y) for
i = 1; 2; 3; ∗ and are asked to discriminate which modified
image corresponds to c∗. If the direction d∗ successfully
generalized to z, then workers should reliably choose the
image change generated by that direction. We run the eval-
uation on 3 z per direction and show each (z, d) pair to 5
distinct workers. We use α = 6 in our experiments. We find
that workers reliably choose the correct image with 61.1%
overall accuracy across (z, d) in the barn class, and 61.6%
overall accuracy in the lake class. Observers only fail to
discriminate about 6% of concepts. For all other concepts,
observers recognize the correct change more often than if
they guessed randomly, demonstrating that our method is
successful at discovering directions that generalize across
the latent space of BigGAN-ImageNet.



Figure S4: Example multiple choice HIT used to test concept generalization across image class. Here, the tree direction in
Z latent space was learned in the cottage class, and is being tested in the lake class. The same multiple choice format is used
to test concept composition, where a target composition (e.g. tree, greener) is described, and workers select which of four
images best captures the composition.

S.5 Generalization and composition experi-
ments

Experimental Paradigm. In Figure S4 we show a screen-
shot of the paradigm used to collect data on AMT for anal-
yses in Sections 4.1, 4.2, and 4.3, testing direction general-
ization across Z and image class, and composition.

Workers are shown an original image G(z;y) for ran-
domly selected z and asked to identify which of four trans-
formed images best corresponds to a named concept c∗. c∗
is randomly positioned among four distractors. Concepts
used to create the distractor images are randomly sampled
from the list of concepts that appeared more than five times
in the annotation data. α was set to 6 for all experiments,
and 5 distinct workers performed each task.

To test salience of concepts and their generalization
across z in a given class (Section 4.1), concepts are tested
for the same class y they were drawn from, for 3 different
z per concept. To test generalization across class (Section
4.2), concepts are tested on a class (selected at random for
each task) other than the one they were drawn from. Con-
cept composition is tested using the method described in

Section 4.3. Workers select between 4 modified images, one
of which corresponds to a pair of concepts named in the task
(e.g. [tree, greener]) and is randomly positioned among
3 other compositions (e.g. [tree, brown], [tree, larger],
[larger, brown]) where larger and brown represent dis-
tractor concepts randomly selected for each task. Workers
were required to be located in the U.S., with > 95% HIT
acceptance rate and > 100 HITs accepted. Workers were
paid $0.06 per HIT.

S.6 Additional qualitative results

In Figure S5 we visualize additional examples of con-
cept subtraction as well as addition for varying α (compare
to Figure 4 in the main paper). While most directions gen-
eralize across z and some across y, others do not. Further-
more, Section 4.3 suggests we can compose concepts. This
works for concepts that regularly occur in the same class,
and some that do not co-occur, but some combinations do
not work. In Figure S6 we show examples of concepts that
fail to generalize across Z or class, or fail to compose with
other concepts.



Figure S5: Additional examples of concept addition and subtraction. α is varied in steps of size 3.



Figure S6: Example failures. (a) Shows sample concepts that did not perform at accuracy above chance in the AMT task
described in Section 4.1. Many of these concepts, such as space, are broad in scope and could be used to describe many
kinds of scene changes. (b) Shows sample concepts that each performed at accuracy above chance within class in the AMT
task described in Section 4.2, but failed to perform above chance when tested in a different class. (c) Shows concepts that
perform above chance individually but not when composed, in the experiment described in Section 4.3.


