
(Supplementary)
Glimpse Attend and Explore: Self-Attention for Active Visual Exploration

Soroush Seifi* Abhishek Jha* Tinne Tuytelaars
PSI, ESAT, KU Leuven

Kasteelpark Arenberg 10, 3001 Leuven
firstname.lastname@esat.kuleuven.be

Code: https://github.com/soroushseifi/glimpse-attend-explore

1. Model architecture
In this section we present the detailed architecture of our network, figures 2,3,4,5. For all experiments, the input scene

and glimpse sizes are fixed to 128× 256× 3 and 48× 48× 3. The glimpse input of the network is scaled down on locations
further away from its center (retina-like glimpse), figure 1. Retina glimpses are used in previous literature to save on the total
number of pixels processed from the scene [5, 6].

The prupose for channel reduction layers in all streams of the network is to bring down the memory usage of the network
as well as the dimension of the features for the contrastive loss.

The ground truth stream shares all its parameters with the other streams of our network namely contrastive and self-
attention streams. The training of all parameters happens through these two streams while we stop the gradient flow in the
ground truth stream, figure 2. The ground truth stream is only employed during training time to generate ground truth features
for the scene (FI ) in the main paper).

Contrastive module shares the reduction parameters on the bottleneck features level with the attention module and the
ground truth stream. The fully connected layers in this level demand high memory making the channel reduction necessary.
Finally, for classification, We employed a simple decoder that fits into both our model and the architecture proposed in [6].

Non-retina

Retina

Figure 1: Retina and full resolution glimpse comparison: Maintaining the consistency in training and evaluation with
Attend and Segment [6], the input to the network is kept retina-like glimpse and not full image crops. For a retina-like
glimpse the glimpse is kept sharp at the center and blurred away from the glimpse center.

*Equal contribution.

https://github.com/soroushseifi/glimpse-attend-explore


Extraction Module
(Resnet-18)
Stop-Grad

Reduce Channels
(Conv 1x1)**

Stop-grad

Scene
(128x256x3)

Bottleneck
Features

(8x16x256)

Reduce Channels
(Conv 1x1)*
Stop-grad

** Shared with Self-attention and Contrastive Streams

2x 
(Fully Connected)*

Stop-grad

Normalized Features
(1024)

Cosine Distance to
Contrastive stream

Reduce Channels
(Conv 1x1)*
Stop-grad

(16x32x4)

2x 
(Fully Connected)*

Stop-grad

Normalized Features
(2048)

Reduce Channels
(Conv 1x1)*
Stop-grad

2x 
(Fully Connected)*

Stop-grad

Normalized Features
(2048)

Cosine Distance to
Contrastive stream

2x 
(Fully Connected)*

Stop-grad

Normalized Features
(8192)

Cosine Distance to
Contrastive stream

(8x16x16) (8x16x8)

Level 3
Features 

(16x32x128)

* Shared with Contrastive Stream

Cosine Distance to
Contrastive stream

Level 2
Features 

(32x64x64)

(32x64x1)

Level 1
Features 

(64x128x64)

Reduce Channels
(Conv 1x1)*
Stop-grad

(64x128x1)

Figure 2: Ground truth stream.
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Figure 3: Contrastive stream.
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Figure 4: Self-attention stream.
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Figure 5: Classification decoder.



2. Average glimpse image
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Figure 6: Average glimpse image: We observe that the patches with higher attendance rates are typically visited in the
first steps of the exploration. We hypothesize these are the locations that the network fixes for each dataset to gain as much
information about the general layout/type of the scene. For instance, the brighter corners For ADE20K [8] and COCO-Stuff
[2] are attended in the second step to determine indoor/outdoor label of the scene (note that the first location is selected
randomly.)



3. Dataset bias
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Figure 7: Dataset bias: Mode and mean image of datasets. On Cityscapes [3], we show the figures corresponding to the
three ‘cities’ from the validation set, the high similarity of mode and mean images across different cities show high dataset
bias. On COCO-Stuff (different from COCO-Things), we consider 91 classes including an unlabeled class consisting of 80
‘things’ classes combined under a single label. Since a large portion of many of the scenes consist of ‘things’ class instances,
the dataset is biased towards this single ‘unlabeled’ class label as shown by green color in the figure. We observe the effect
of this class-imbalance on the segmentation performance as well, as shown in figure 11, for COCO-stuff segmentation task.
It is worth mentioning, compared to common segmentation methods working on the full observable scenes, our architecture
is affected more by this class imbalance has due to the small size of glimpses and the partial observability setting. If the
attended areas consist of objects from ‘things’ classes, the network does not benefit from those glimpses.



4. Visual comparison with Attend and Segment
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Figure 8: Reconstruction comparison: We compare the reconstruction performance against Attend and Segment model
[6] on SUN360 dataset [7]. We observe that [6] reconstructed images contains visual patch-like artifacts, while our results
provide a more consistent image reconstruction.
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Figure 9: Segmentation comparison: Here we visually compare our result against Attend and Segment model [6] for
segmentation task on ADE20k dataset [8]



5. Prediction by different streams
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(b) Segmentation and reconstruction on COCO-Stuff dataset [2]
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(c) Segmentation on ADE20k [8]
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Figure 10: Reconstruction and segmentation by self-attention stream, contrastive stream, and full model’s output.



6. Negative Results
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Figure 11: Negative results for segmentation and reconstruction task.



7. Step-by-step Glimpse selection
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(b) Segmentation on ADE20k [8]
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(d) Segmentation on COCO-Stuff [2]

Figure 12: Glimpse-Attend-and-Explore: Step-by-step glimpse selection and execution of reconstruction and segmentation
task.
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