
Supplementary Material: Hierarchical Kinematic Probability Distributions for 3D Human Shape
and Pose Estimation from Images in the Wild

This document provides additional material supplementing
the main manuscript. Section 1 contains implementation
details, particularly regarding synthetic training data gen-
eration and per-vertex uncertainty visualisation. Section 2
discusses qualitative results on the SSP-3D [9] and 3DPW
[13] datasets, and compares distribution predictions on im-
ages with versus without artificial occlusions.

1. Implementation Details
1.1. Synthetic Training Data

Our shape and pose distribution prediction neural net-
works are trained using synthetic training data, consisting
of edge-and-joint-heatmap inputs paired with ground truth
SMPL [7] shape and pose parameters. Inputs are rendered
on-the-fly during model training using randomly sampled
camera extrinsics, lighting, backgrounds and clothing tex-
tures. Examples of synthetic training and validation data
are given in Figure 1. Note how each body pose may
be paired with a different body shape, clothing, camera
and background, as well as occlusion and noise augmen-
tations. Thus, we are able to render highly diverse train-
ing data on-the-fly during training, enabling the network to
see a new pose/shape/clothing/camera/background combi-
nation in each training iteration.

The synthetic RGB images shown in Figure 1 are com-
putationally cheap to render but clearly far from photore-
alistic, resulting in a large synthetic-to-real domain gap.
However, simple edge detection [2] is able to significantly
reduce this gap [3], motivating the use of edge-filtered im-
ages as part of our input proxy representation. Furthermore,
we found that noisy edge detections (as seen in Figure 1)
retained sufficient visual shape and pose information, and
efforts to produce clean edge-images (e.g. hysteresis-based
edge tracking or further hyperparameter tuning) did not im-
prove performance.

The required body shape, pose, clothing and back-
grounds are obtained as follows. For training, ground-
truth SMPL 3D joint rotation matrices are sampled from
the training splits of 3DPW [13] and UP-3D [6], as well
as Human3.6M [5] subjects 1, 5, 6, 7 and 8, giving a to-
tal of 91106 training poses. Validation poses are sampled
from the 3DPW/UP-3D validation splits and Human3.6M
subjects 9 and 11, resulting in 33347 validation poses.
SMPL body shape parameters are randomly sampled from
N (βi; 0, 1.25

2) for i = 1, ..., 10 [9]. RGB clothing tex-
tures for the SMPL body mesh are selected from SURREAL
[12] and MultiGarmentNet [1], resulting in 917 training tex-
tures and 108 validation textures. Backgrounds are obtained
from LSUN [14], which contains a collection of diverse

Hyperparameter Value

Shape parameter sampling mean 0
Shape parameter sampling std. 1.25
Cam. translation sampling mean (0, -0.2, 2.5) m
Cam. translation sampling var. (0.05, 0.05, 0.25) m
Cam. focal length 300.0
Lighting ambient intensity range [0.4, 0.8]
Lighting diffuse intensity range [0.4, 0.8]
Lighting specular intensity range [0.0, 0.5]
Bounding box scale factor range [0.8, 1.2]
Proxy representation dimensions 256× 256 pixels

Table 1. List of hyperparameter values associated with synthetic
training data generation.

Augmentation Hyperparameter Value

Body part occlusion Occlusion probability 0.1
2D joints L/R swap Swap probability 0.1
Half-image occlusion Occlusion probability 0.05
2D joints removal Removal probability 0.1
2D joints noise Noise range [-8, 8] pixels
Occlusion box Probability, Size 0.5, 48 pixels

Table 2. List of synthetic training data augmentations and their
associated hyperparameter values. Body part occlusion uses the
24 DensePose [4] parts. Joint L/R swap is done for shoulders,
elbows, wrists, hips, knees, ankles.

indoor and outdoor scenes. We sample from 397582 dif-
ferent training backgrounds and 3000 different validation
backgrounds. Note that background training images may
contain other humans, which is intentional and essential for
robustness against test images with multiple people. The
network learns to focus on the person corresponding to the
input joint heatmaps and ignore persons in the background.

Textured SMPL meshes are rendered with Pytorch3D
[8], using a perspective camera model and Phong shad-
ing. Camera and lighting parameters are randomly sampled,
with sampling hyperparameters given in Table 1. Gener-
ated images are cropped around the rendered body using a
square bounding box, where the bounding box size is ran-
domly scaled by a factor in range (0.8, 1.2).

To further bridge the gap between synthetic data and
real test data, which may exhibit significant occlusions and
noise, we implement random occlusion, body part removal,
2D joint removal and 2D joint noise augmentations during
training. Hyperparameters associated with data augmenta-
tions are given in Table 2.

1



Figure 1. Examples of synthetic training and validation data rendered on-the-fly during model training. Synthetic RGB images are converted
into edge-filtered images and 2D joint heatmaps, which act as the input to the distribution prediction network presented in the main
manuscript. The synthetic RGB images are computationally-cheap and far from photorealistic. However, edge detection [2] is able to
significantly bridge the synthetic-to-real domain gap, as can be seen by comparing the synthetic edge-images with real edge-images in
Figures 2 and 3.

1.2. Visualisation of Per-Vertex Uncertainty

Figures 2, 3 and 4 in this supplementary material, as
well as several figures in the main manuscript, visualise
per-vertex 3D location uncertainties corresponding to the
predicted shape and 3D joint rotation distributions. These
are computed by i) sampling 100 shape parameter vectors
and relative 3D joint rotations (for the entire kinematic tree)
from the predicted distributions, ii) passing each of these
samples through the SMPL function [7] to get the corre-
sponding vertex meshes, iii) computing the mean location
of each vertex over all the samples and iv) determining the
average Euclidean distance from the sample mean for each
vertex over all the samples, which is ultimately visualised
in the vertex scatter plots as a measure of per-vertex 3D lo-
cation uncertainty.

2. Qualitative Results

Figure 3 presents results on artificially occluded im-
ages from SSP-3D [9]. In particular, note that i) oc-
cluded/invisible body parts result in increased 3D location
uncertainty for corresponding vertices and ii) 3D body sam-
ples from the predicted distributions match the visible body
parts in the 2D image, while invisible body part samples are
more diverse. However, occluded sample diversity is still
somewhat limited and samples tend to be clustered around
the mode predictions, which is a weakness of our method.
This may be alleviated by predicting multi-modal distribu-
tions over 3D shape and pose in future work. Figure 3 also
illustrates our method’s ability to predict a range of body
shapes, owing to the synthetic training framework used.

Figure 2 presents results on the test split of 3DPW [13].
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Figure 2. 3D reconstruction samples and per-vertex uncertainties corresponding to shape and relative 3D joint rotation distributions pre-
dicted from 3DPW images[13]. The selected images exhibit self-occlusion and out-of-frame body parts, which result in greater 3D location
uncertainty for vertices belonging to ambiguous parts.

Again, note the increased uncertainty and sample diversity
for occluded and out-of-frame body parts, and the reprojec-
tion consistency between predicted samples and the visible
bodies in the images. Results on 3DPW highlight another
key challenge for future work: when faced with baggy/loose
clothing, our method tends to over-estimate the subject’s
body proportions. This is because our synthetic training
data does not model the shape of clothing on the human
body surface, but only its texture. Future work could focus
on using synthetic clothed humans for training.

Figure 4 compares shape and pose distribution predic-
tions on images from SSP-3D with versus without artifi-

cial occlusions, further corroborating that ambiguous parts
result in greater uncertainty and more diverse 3D sam-
ples. However, it is again apparent that sample diversity
for highly ambiguous parts is more limited than expected,
as samples tend to be closely clustered around the mode
prediction.

Note that uncertainty does not only arise from occlusion
- depth ambiguities are prevalent when estimating 3D pose
from a monocular 2D image [10, 11]. This is demonstrated
in the non-occluded images in Figure 4 (left), by the left
arm samples in rows 1 and 5 and the right arm in row 4.
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Figure 3. 3D reconstruction samples and per-vertex uncertainties corresponding to shape and relative 3D joint rotation distributions pre-
dicted from SSP-3D images[9]. The images are artificially occluded, resulting in greater 3D location uncertainty for vertices belonging to
ambiguous parts.
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Figure 4. Comparison between 3D samples and per-vertex uncertainties obtained using artificially occluded versus non-occluded input
images from SSP-3D [9]. Ambiguous parts have greater prediction uncertainty.
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[4] Riza Alp Güler, Natalia Neverova, and Iasonas Kokkinos.
Densepose: Dense human pose estimation in the wild. In
Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2018. 1

[5] Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian
Sminchisescu. Human3.6M: Large scale datasets and pre-
dictive methods for 3D human sensing in natural environ-
ments. IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI), 36(7):1325–1339, July 2014. 1

[6] Christoph Lassner, Javier Romero, Martin Kiefel, Federica
Bogo, Michael J. Black, and Peter V. Gehler. Unite the Peo-
ple: Closing the loop between 3D and 2D human representa-
tions. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2017. 1

[7] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard
Pons-Moll, and Michael J. Black. SMPL: A skinned multi-
person linear model. In ACM Transactions on Graphics
(TOG) - Proceedings of ACM SIGGRAPH Asia, volume 34,
pages 248:1–248:16. ACM, 2015. 1, 2

[8] Nikhila Ravi, Jeremy Reizenstein, David Novotny, Tay-
lor Gordon, Wan-Yen Lo, Justin Johnson, and Georgia
Gkioxari. Accelerating 3D deep learning with PyTorch3D.
arXiv:2007.08501, 2020. 1

[9] Akash Sengupta, Ignas Budvytis, and Roberto Cipolla. Syn-
thetic training for accurate 3D human pose and shape esti-
mation in the wild. In Proceedings of the British Machine
Vision Conference (BMVC), September 2020. 1, 2, 4, 5

[10] Cristian Sminchisescu and Bill Trigg. Covariance scaled
sampling for monocular 3D body tracking. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2001. 3

[11] Cristian Sminchisescu and Bill Trigg. Kinematic jump pro-
cesses for monocular 3D human tracking. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2003. 3

[12] Gül Varol, Javier Romero, Xavier Martin, Naureen Mah-
mood, Michael J. Black, Ivan Laptev, and Cordelia Schmid.
Learning from synthetic humans. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2017. 1

[13] Timo von Marcard, Roberto Henschel, Michael Black, Bodo
Rosenhahn, and Gerard Pons-Moll. Recovering accurate 3D
human pose in the wild using IMUs and a moving camera.

In Proceedings of the European Conference on Computer Vi-
sion (ECCV), 2018. 1, 2, 3

[14] Fisher Yu, Yinda Zhang, Shuran Song, Ari Seff, and Jianx-
iong Xiao. LSUN: Construction of a large-scale image
dataset using deep learning with humans in the loop. arXiv
preprint arXiv:1506.03365, 2015. 1

6


