Supplementary Material: Hierarchical Memory Matching Network for Video Object Segmentation

Hongje Seong¹ Seoung Wug Oh² Seongwon Lee¹

Suhyeon Lee¹

Joon-Young Lee² Euntai Kim^{1,*}

¹Yonsei University

²Adobe Research

1. Network Structure Details

Top-k guided memory matching module at res2 stage. Fig. 1 shows a detailed implementation of the top-kguided memory matching module at the res2 stage. Compare to the top-k guided memory matching module at the res3 stage, we reduce the number of k to k/4. We also take the reduced channel dimensions of key and value, except for the query value.

Detailed implementation of decoder. We follow the decoder architecture of STM [24], and a detailed implementation is provided in Fig. 2. Note that, in the refinement modules of STM [24], the skip-connected features $(\mathbf{Z}_3, \mathbf{Z}_2)$ are encoded via convolutional layers before fed to residual block. We replace the convolutional layers with value embedding layers in top-k guided memory matching modules.

2. More Quantitative Results

Tables 1, 2, and 3 provide full comparisons on DAVIS 2016 val, 2017 val, and 2017 test-dev sets, respectively. As shown in the tables, recent offline-learning methods such as KMN [27], CFBI [33], LWL [2], and STM [24] surpassed online-learning methods such as PReMVOS [20], RaNet [30], e-OSVOS [22], and DyeNet [14] by additionally using YouTube-VOS [31] training data. However, we surpass all online-learning methods, which need additional run-time for fine-tuning during inference, even if we do not use additional YouTube-VOS training data. Therefore, the superiority of our HMMN has not relied on additional YouTube-VOS training data.

3. More Qualitative Results

We show more qualitative results on DAVIS [25] in Fig. 3 and results on YouTube-VOS [31] in Figs. 4 and 5. In the figures, we additionally show the results of STM¹ [24],

Figure 1. A detailed implementation of the top-k guided memory matching module at the res2 stage. Memory and query dimensions are indicated using blue and red.

KMN² [27], and CFBI³ [33]. Sine some frames are omitted in the figures, we further provide a comparison video: https://youtu.be/zSofRzPImQY.

References

- [1] Linchao Bao, Baoyuan Wu, and Wei Liu. Cnn in mrf: Video object segmentation via inference in a cnn-based higherorder spatio-temporal mrf. In CVPR, pages 5977-5986, 2018. 2, 6
- [2] Goutam Bhat, Felix Järemo Lawin, Martin Danelljan, Andreas Robinson, Michael Felsberg, Luc Van Gool, and Radu

^{*}Corresponding author.

¹results are taken from https://github.com/seoungwugoh/ STM

²results are extracted from our reproduced model.

³results are taken from https://github.com/z-x-yang/ CFBI.

Figure 2. A detailed implementation of decoder. We notated the output scale and channel dimension next to each block in the decoder.

Method	OL	$\mathcal{J}\&\mathcal{F}$	\mathcal{J}	${\mathcal F}$	Time
OSVOS [3]	\checkmark	80.2	79.8	80.6	9 <i>s</i>
MaskRNN [9]	\checkmark	80.8	80.7	80.9	-
VidMatch [10]		-	81.0	-	0.32s
FAVOS [5]		81.0	82.4	79.5	1.8s
LSE [6]	\checkmark	81.6	82.9	80.3	-
FEELVOS [28]		81.7	80.3	83.1	0.45s
FEELVOS (+YV) [28]		81.7	81.1	82.2	0.45s
FRTM [26]	\checkmark	81.7	-	-	0.05s
RGMP [23]		81.8	81.5	82.0	0.13 <i>s</i>
A-GAME (+YV) [12]		-	82.0	-	0.07s
SAT [4]		83.1	82.6	83.6	0.03s
FRTM (+YV) [26]	\checkmark	83.5	-	-	0.05s
DTN [35]		83.6	83.7	83.5	0.07s
CINN [1]	\checkmark	84.2	83.4	85.0	>30s
DyeNet [14]		-	84.7	-	0.42s
RaNet [30]		85.5	85.5	85.4	0.03s
OnAVOS [29]	\checkmark	85.5	86.1	84.9	13s
STG-Net [18]		85.7	85.4	86.0	0.16 <i>s</i>
$OSVOS^S$ [21]	\checkmark	86.0	85.6	86.4	4.5s
DIPNet [8]	\checkmark	86.1	85.8	86.4	1.09s
CFBI [33]		86.1	85.3	86.9	0.18s
STM [24]		86.5	84.8	88.1	0.16s
PReMVOS [20]	\checkmark	86.8	84.9	88.6	32.8 <i>s</i>
e-OSVOS [22]	\checkmark	86.8	86.6	87.0	3.4s
DyeNet [14]	\checkmark	-	86.2	-	2.32s
RaNet [30]	\checkmark	87.1	86.6	87.6	4s
KMN [27]		87.6	87.1	88.1	0.12s
STM (+YV) [24]		89.3	88.7	89.9	0.16s
CFBI (+YV) [33]		89.4	88.3	90.5	0.18s
KMN (+YV) [27]		90.5	89.5	91.5	0.12s
HMMN		89.4	88.2	90.6	0.10s
HMMN (+YV)		90.8	89.6	92.0	0.10s

Table 1. Full comparison on DAVIS 2016 validation set. (**+YV**) indicates YouTube-VOS is additionally used for training, and OL denotes the use of online-learning strategies during test-time. Time measurements reported in this table are directly from the corresponding papers.

Timofte. Learning what to learn for video object segmentation. In *ECCV*, 2020. 1, 2

[3] Sergi Caelles, Kevis-Kokitsi Maninis, Jordi Pont-Tuset, Laura Leal-Taixé, Daniel Cremers, and Luc Van Gool. Oneshot video object segmentation. In CVPR, pages 221–230,

Method	OL	$\mathcal{J}\&\mathcal{F}$	\mathcal{J}	\mathcal{F}
OSVOS [3]	\checkmark	60.3	56.6	63.9
VidMatch [10]		62.4	56.5	68.2
MaskRNN [9]	\checkmark	-	60.5	-
RaNet [30]		65.7	63.2	68.2
AGSS-VOS [17]		66.6	63.4	69.8
RGMP [23]		66.7	64.8	68.6
DTN [35]		67.4	64.2	70.6
AGSS-VOS (+YV) [17]		67.4	64.9	69.9
OnAVOS [29]	\checkmark	67.9	64.5	71.2
$OSVOS^{S}$ [21]	\checkmark	68.0	64.7	71.3
DIPNet [8]	\checkmark	68.5	65.3	71.6
FRTM [26]	\checkmark	68.8	-	-
FEELVOS [28]		69.1	65.9	72.3
DyeNet [14]		69.1	67.3	71.0
A-GAME (+YV) [12]		70.0	67.2	72.7
CINN [1]	\checkmark	70.7	67.2	74.2
DMM-Net [34]		70.7	68.1	73.3
GC [15]		71.4	69.3	73.5
STM [24]		71.6	69.2	74.0
FEELVOS (+YV) [28]		72.0	69.1	74.0
SAT [4]		72.3	68.6	76.0
TVOS [36]		72.3	69.9	74.7
LWL [2]		74.3	72.2	76.3
AFB+URR [16]		74.6	73.0	76.1
STG-Net [18]		74.7	71.5	77.9
CFBI [33]		74.9	72.1	77.7
DTTM-TAN [11]		75.9	72.3	79.4
KMN [27]		76.0	74.2	77.8
FRTM (+YV) [26]	\checkmark	76.7	-	-
e-OSVOS [22]	\checkmark	77.2	74.4	80.0
PReMVOS [20]	\checkmark	77.8	73.9	81.7
LWL (+YV) [2]		81.6	79.1	84.1
STM (+YV) [24]		81.8	79.2	84.3
CFBI (+YV) [33]		81.9	79.1	84.6
EGMN (+YV) [19]		82.8	80.2	85.2
KMN (+YV) [27]		82.8	80.0	85.6
HMMN		80.4	77.7	83.1
HMMN (+YV)		84.7	81.9	87.5

Table 2. Full comparison on DAVIS 2017 validation set.

2017. <mark>2, 6</mark>

[4] Xi Chen, Zuoxin Li, Ye Yuan, Gang Yu, Jianxin Shen, and Donglian Qi. State-aware tracker for real-time video object segmentation. In *CVPR*, pages 9384–9393, 2020. 2

Figure 3. More qualitative results on DAVIS 2017 validation and test-dev sets. We marked significant improvements from STM [24], KMN [27], and CFBI [33] using red boxes.

Figure 4. More qualitative results on YouTube-VOS 2019 validation set.

Figure 5. More qualitative results on YouTube-VOS 2019 validation set.

Method	OL	$\mathcal{J}\&\mathcal{F}$	\mathcal{J}	${\mathcal F}$
OSMN [32]		39.3	33.7	44.9
FAVOS [5]		43.6	42.9	44.2
OSVOS [3]	\checkmark	50.9	47.0	54.8
CapsuleVOS [7]		51.3	47.4	55.2
OnAVOS [29]	\checkmark	52.8	49.9	55.7
RGMP [23]		52.9	51.3	54.4
RaNet [30]		53.4	55.3	57.2
$OSVOS^S$ [21]	\checkmark	57.5	52.9	62.1
FEELVOS (+YV) [28]		57.8	55.1	60.4
TVOS [36]		63.1	58.8	67.4
STG-Net [18]		63.1	59.7	66.5
e-OSVOS [22]	\checkmark	64.8	60.9	68.6
DTTM-TAN [11]		65.4	61.3	70.3
Lucid [13]	\checkmark	66.7	63.4	69.9
CINN [1]	\checkmark	67.5	64.5	70.5
DyeNet [14]	\checkmark	68.2	65.8	70.5
PReMVOS [20]	\checkmark	71.6	67.5	75.7
STM (+YV) [24]		72.2	69.3	75.2
CFBI (+YV) [33]		74.8	71.1	78.5
KMN (+YV) [27]		77.2	74.1	80.3
HMMN (+YV)		78.6	74.7	82.5

Table 3. Full comparison on DAVIS 2017 test-dev set.

- [5] Jingchun Cheng, Yi-Hsuan Tsai, Wei-Chih Hung, Shengjin Wang, and Ming-Hsuan Yang. Fast and accurate online video object segmentation via tracking parts. In *CVPR*, pages 7415–7424, 2018. 2, 6
- [6] Hai Ci, Chunyu Wang, and Yizhou Wang. Video object segmentation by learning location-sensitive embeddings. In ECCV, pages 501–516, 2018. 2
- [7] Kevin Duarte, Yogesh S. Rawat, and Mubarak Shah. Capsulevos: Semi-supervised video object segmentation using capsule routing. In *ICCV*, October 2019. 6
- [8] Ping Hu, Jun Liu, Gang Wang, Vitaly Ablavsky, Kate Saenko, and Stan Sclaroff. Dipnet: Dynamic identity propagation network for video object segmentation. In WACV, pages 1904–1913, 2020. 2
- [9] Yuan-Ting Hu, Jia-Bin Huang, and Alexander Schwing. Maskrnn: Instance level video object segmentation. In *NIPS*, pages 325–334, 2017. 2
- [10] Yuan-Ting Hu, Jia-Bin Huang, and Alexander G Schwing. Videomatch: Matching based video object segmentation. In ECCV, pages 54–70, 2018. 2
- [11] Xuhua Huang, Jiarui Xu, Yu-Wing Tai, and Chi-Keung Tang. Fast video object segmentation with temporal aggregation network and dynamic template matching. In *CVPR*, pages 8879–8889, 2020. 2, 6
- [12] Joakim Johnander, Martin Danelljan, Emil Brissman, Fahad Shahbaz Khan, and Michael Felsberg. A generative appearance model for end-to-end video object segmentation. In *CVPR*, pages 8953–8962, 2019. 2
- [13] Anna Khoreva, Rodrigo Benenson, Eddy Ilg, Thomas Brox, and Bernt Schiele. Lucid data dreaming for video object segmentation. *International Journal of Computer Vision*, 127(9):1175–1197, 2019. 6

- [14] Xiaoxiao Li and Chen Change Loy. Video object segmentation with joint re-identification and attention-aware mask propagation. In *ECCV*, pages 90–105, 2018. 1, 2, 6
- [15] Yu Li, Zhuoran Shen, and Ying Shan. Fast video object segmentation using the global context module. In *ECCV*, 2020.
 2
- [16] Yongqing Liang, Xin Li, Navid Jafari, and Qin Chen. Video object segmentation with adaptive feature bank and uncertain-region refinement. In *NIPS*, 2020. 2
- [17] Huaijia Lin, Xiaojuan Qi, and Jiaya Jia. Agss-vos: Attention guided single-shot video object segmentation. In *ICCV*, October 2019. 2
- [18] Daizong Liu, Shuangjie Xu, Xiao-Yang Liu, Zichuan Xu, Wei Wei, and Pan Zhou. Spatiotemporal graph neural network based mask reconstruction for video object segmentation. In AAAI, 2021. 2, 6
- [19] Xinkai Lu, Wenguan Wang, Martin Danelljan, Tianfei Zhou, Jianbing Shen, and Luc Van Gool. Video object segmentation with episodic graph memory networks. In ECCV, 2020. 2
- [20] Jonathon Luiten, Paul Voigtlaender, and Bastian Leibe. Premvos: Proposal-generation, refinement and merging for video object segmentation. In ACCV, pages 565–580. Springer, 2018. 1, 2, 6
- [21] K-K Maninis, Sergi Caelles, Yuhua Chen, Jordi Pont-Tuset, Laura Leal-Taixé, Daniel Cremers, and Luc Van Gool. Video object segmentation without temporal information. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 41(6):1515–1530, 2019. 2, 6
- [22] Tim Meinhardt and Laura Leal-Taixé. Make one-shot video object segmentation efficient again. In NIPS, 2020. 1, 2, 6
- [23] Seoung Wug Oh, Joon-Young Lee, Kalyan Sunkavalli, and Seon Joo Kim. Fast video object segmentation by referenceguided mask propagation. In *CVPR*, pages 7376–7385, 2018. 2, 6
- [24] Seoung Wug Oh, Joon-Young Lee, Ning Xu, and Seon Joo Kim. Video object segmentation using space-time memory networks. In *ICCV*, October 2019. 1, 2, 3, 6
- [25] Jordi Pont-Tuset, Federico Perazzi, Sergi Caelles, Pablo Arbeláez, Alex Sorkine-Hornung, and Luc Van Gool. The 2017 davis challenge on video object segmentation. arXiv preprint arXiv:1704.00675, 2017. 1
- [26] Andreas Robinson, Felix Jaremo Lawin, Martin Danelljan, Fahad Shahbaz Khan, and Michael Felsberg. Learning fast and robust target models for video object segmentation. In *CVPR*, pages 7406–7415, 2020. 2
- [27] Hongje Seong, Junhyuk Hyun, and Euntai Kim. Kernelized memory network for video object segmentation. In ECCV, 2020. 1, 2, 3, 6
- [28] Paul Voigtlaender, Yuning Chai, Florian Schroff, Hartwig Adam, Bastian Leibe, and Liang-Chieh Chen. Feelvos: Fast end-to-end embedding learning for video object segmentation. In *CVPR*, pages 9481–9490, 2019. 2, 6
- [29] Paul Voigtlaender and Bastian Leibe. Online adaptation of convolutional neural networks for video object segmentation. In *BMVC*, 2017. 2, 6

- [30] Ziqin Wang, Jun Xu, Li Liu, Fan Zhu, and Ling Shao. Ranet: Ranking attention network for fast video object segmentation. In *ICCV*, October 2019. 1, 2, 6
- [31] Ning Xu, Linjie Yang, Yuchen Fan, Jianchao Yang, Dingcheng Yue, Yuchen Liang, Brian Price, Scott Cohen, and Thomas Huang. Youtube-vos: Sequence-to-sequence video object segmentation. In *ECCV*, pages 585–601, 2018.
- [32] Linjie Yang, Yanran Wang, Xuehan Xiong, Jianchao Yang, and Aggelos K Katsaggelos. Efficient video object segmentation via network modulation. In *CVPR*, pages 6499–6507, 2018. 6
- [33] Zongxin Yang, Yunchao Wei, and Yi Yang. Collaborative video object segmentation by foreground-background integration. In *ECCV*, 2020. 1, 2, 3, 6
- [34] Xiaohui Zeng, Renjie Liao, Li Gu, Yuwen Xiong, Sanja Fidler, and Raquel Urtasun. Dmm-net: Differentiable maskmatching network for video object segmentation. In *ICCV*, October 2019. 2
- [35] Lu Zhang, Zhe Lin, Jianming Zhang, Huchuan Lu, and You He. Fast video object segmentation via dynamic targeting network. In *ICCV*, October 2019. 2
- [36] Yizhuo Zhang, Zhirong Wu, Houwen Peng, and Stephen Lin. A transductive approach for video object segmentation. In *CVPR*, pages 6949–6958, 2020. 2, 6