
8. Supplementary Material
8.1. Other Privacy Attacks

Besides membership inference attacks, there exists a wide
range of privacy attacks against neural networks. Model in-
version attacks, first proposed by [14], aim at reconstructing
features of the training data, e.g. recovering an image of a
person from face recognition models [13]. Property infer-
ence attacks, proposed by [15], do not focus on the privacy
of individual data samples, as in membership inference and
model inversion attacks, but focus at inferring global proper-
ties of the training data, such as the environment in which
the data was produced or the fraction of the data that comes
from a certain class.

Model extraction attacks, also referred to as model steal-
ing, attack a model f by constructing a substitute model f̂
that is either identical or equivalent to f [40, 24]. Related
line of work [45, 32] attempts to infer hyperparameters such
as the optimization proccess, e.g. SGD or ADAM.

8.2. Detailed Description of Our MIA Algorithm

Our MIA consist of computing the two terms in Eq. (2),
i.e. Lrec and Lpred for a given query pair (x, y), where x is
an image from the input domain and y is the ground truth
from the output domain, using only a black-box access to
the victim conditional generation model V.
Lrec is computed using the pixel-wise error between the

output image predicted by the model, V(x), and the ground
truth image y, see step 1 in the Algorithm 1. For image
translation models, we set the pixel-wise error function, err,
to be the L1 loss:

Ltrans
rec (x, y) = ‖V(x)− y‖ (3)

For semantic segmentation, where the output values are
probability vectors rather then pixel values, we use the cross-
entropy loss:

Lseg
rec(x, y) = −log(V(x)[y]) (4)

In the case of medical segmentation, following Fan et al.
[11, 12], we use the weighted IoU loss and binary cross-
entropy loss:

Lmed
rec (x, y) = Lw

IoU (x, y) + Lw
BCE(x, y) (5)

Defined as:

Lw
IoU = 1−

H∑
i=1

W∑
j=1

wij(V(x)ij · yij)

H∑
i=1

W∑
j=1

wij(V(x)ij + yij −V(x)ij · yij)
(6)

Lw
BCE = −

H∑
i=1

W∑
j=1

wij log(V(x)[y]ij)

H∑
i=1

W∑
j=1

wij

(7)

Where H and W are the height and width of the query
sample, and wij is the weight of pixel (i, j) and is defined
as follows, where Aij represents the area that surrounds the
pixel (i, j):

wij = 1−

∣∣∣∣∣∣∣
∑

m,n∈Aij

ymn∑
m,n∈Aij

1
− yij

∣∣∣∣∣∣∣ (8)

Lpred is computed as the average error of a linear regres-
sion model, P, in predicting pixel values from deep features
of the input image.

Our deep features are the activation values in the first 4
blocks of a pre-trained Wide-ResNet50×2 [50]. These fea-
tures are of sizes 56×56×256, 28×28×512, 14×14×1024,
and 7×7×2048. We interpolate all features to size 56×56
using bi-linear interpolation (step 2), and also reduce the
output image to 56×56 using bicubic interpolation (step 3).
This gives a concatenated feature vector of size 3840 for each
pixel i in the 56×56 image (256+512+1024+2048=3840).
We denote the concatenated feature vector for pixel i as ψ(i).

We randomly select 70% of the pixels as train set,
and compute a linear model P to estimate the RGB
pixel values yitrain from the corresponding deep fea-
tures ψtrain(i) (step 4). The remaining 30% of pixels
will be used as a test split, {ψtest, ytest} (step 5). I.e.
|ψtrain| = 2195×3840, |ytrain| = 2195×3 and |ψtest| =
941×3840, |ytest| = 941×3.

The linear regression model P, a matrix of size 3840×3,
is trained to minimize the error over {ψtrain, ytrain} (step 6).
Lpred will be the average absolute error over {ψtest, ytest}
(step 7). We found that fitting the linear model to 70%
of pixels and measuring the error on the remaining 30%
gives better results than just measuring the error of the linear
fitting.

We compute Lmem according to Eq. (2) and compare the
results with a predefined threshold value τ , such that any pair
(x, y) for which is holds that Lmem(x, y) < τ is denoted as
a member of the victim models’ V train set (steps 8-9).

We have experimented with different resize methods (step
3) and found that our attack success rate is not very sensitive
to the resize method. Additionally, we evaluated the effect
of different train-test partitions (steps 4 & 5) and found that
using less than 50% of the image pixels for training the linear
regression model results with unstable performance, while
all values of 50% or above results in similar attack success
rates.

8.3. Parameter Selection

We experimented with different values for the α value in
Eq. (2). As can be seen in Fig. 6, α = 1 was the best choice
over all benchmarks.
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Figure 6. Effect of α in Eq. (2) over the attack success.

Algorithm 1. Membership Inference Attack
Input: Query pair (x, y), victim model V, feature
extractor F, scalar α, threshold τ , error function err
Output: Membership inference result

1. Lrec = err(V(x), y)

2. ψ = F(x)// |ψ| = 56× 56× 3840

3. y = resize(y, 56× 56× 3)

4. {ψtrain, ytrain}
70%←−− {ψ, y}

5. {ψtest, ytest} = {ψ, y} \ {ψtrain, ytrain}

6. Train linear regression P with {ψtrain, ytrain}

7. Lpred = 1
N

∑N
i=1 ‖Pψtest(i) − yitest‖1 //N =

941

8. Lmem = Lrec − α · Lpred

9. if Lmem < τ then
Return True

else
Return False

8.4. MIA vs output dimension

As described in Sec. 4.1, we evaluted the effect of reduc-
ing the output dimension on the accuracy of reconstruction-
based MIA. The reduction was achieved by randomly sam-
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Figure 7. Effect of reducing output dimensionality over a
reconstruction-based attack. MIA accuracy is correlated with the
decrease of output dimension, i.e. number of pixels, demonstrating
that high output dimensionality problems are more vulnerable to
MIA.

pling N output pixels, and using them as the output, where
N ranges from a single pixel and up to 200 pixels. Fig. 7
demonstrates that MIA accuracy indeed scales with the num-
ber of output dimensions. Results for Pix2PixHD, UperNet
and HRNetV2 are presetned in Fig. 2.

8.5. calibration Effect

As can be seen in Tab. 1, using our membership error
Lmem, Eq. (2), substantially improves the sucess rates in
all of our experiments. As can be seen in Fig. 8, our Lmem

can better separate train and test images by a simple thresh-
old compared to the reconstruction error Lrec. Results for
Pix2PixHD on the Maps2sat and Cityscapes datasets are
presented in Fig. 4.

8.6. Human-Supervised Image difficulty score

We compare our self-supervised single-sample pre-
dictability error with the human-supervised difficulty score
proposed by [41]. In Fig. 9, we present images ranked from
easy to difficult using our implementation of the supervised-
image difficulty score, for the Cityscapes and Maps datasets.
The ranking seems correlated with image sharpness and level-
of-detail images. As can be seen in Tab. 3, our score outper-
forms the human-supervised score. We compare the corre-
lation between the reconstruction error for unseen images
to our self-supervised predictability error and the human-
supervsied scorre.

8.7. Multi-Image predictability error

As discussed in Sec. 4.2.2, we compare our single-sample
predictability error to a multi-sample predictability error
(MSPS) by training a ”shadow” model, sharing the same
architecture as the victim model, on auxiliary samples. As
can be seen in Tab. 3, when training the MSPS on 100 im-
ages, it underperforms our method on Pix2PixHD and the
evaluated semantic segmentation models. For the smaller
Pix2Pix architecture, MSPS was more successful, obtaining
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Figure 8. The proposed membership error Lmem can better separate train and test images by a simple threshold (i.e. a vertical line) compared
to the reconstruction error Lrec. Pix2pixHD for Maps2sat and Cityscapes are presented in Fig. 4

competitive results with our method. We analyzed the effect
of number of samples over the MSPS performance. As can
be seen in Fig. 10, in most tasks, increasing the number of
samples did not improve performance.

We also compare our method to the setting were many out-
of-distribution but similar sample are available. We trained
shadow models on 4K samples from the BDD dataset as
MSPS for the Cityscapes dataset. As can be seen in Tab. 8,

this too underperforms our method. Note that it is rare to
have similar datasets with nearly identical labels, such as in
the case of BDD and Cityscapes.

8.8. Shadow models

As discussed in Sec. 4.2.2, for the interest of complete-
ness we compare our method with the popular approach of
shadow-model classifiers for image translation MIA. For this,



Model Dataset Ours Human-Supervised
train / test train / test

Pix2Pix Facades 0.79 / 0.50 -0.02 / 0.16
Pix2Pix Maps2sat 0.51 / 0.77 0.79 / 0.52
Pix2Pix Cityscapes 0.78 / 0.71 0.04 / 0.09

Pix2PixHD Facades 0.67 / 0.36 0.27 / 0.04
Pix2PixHD Maps2sat 0.38 / 0.79 0.77 / 0.56
Pix2PixHD Cityscapes 0.76 / 0.62 0.36 / 0.48

SPADE Cityscapes 0.80 / 0.68 0.29 / 0.53
SPADE ADE20K 0.48 / 0.27 0.25 / -0.05

UperNet50 ADE20K 0.66 / 0.13 0.34 / 0.05
UperNet101 ADE20K 0.65 / 0.13 0.38 / 0.06
HRNetV2 ADE20K 0.61 / 0.22 0.36 / 0.10

Table 7. Our self-supervised difficulty score is better correlated
with the reconstruction error than the human-supervised

Figure 9. Examples of images from the Cityscapes (first two rows)
and Maps2sat (last two rows) datasets that received the lowest (first
and third row) and highest (second and last row) predictability
errors using the supervised difficulty score.

Model Dataset Ours Multi-Image
In-Dist BDD

Pix2pix Cityscapes 82.94% 82.47% 74.43%
Pix2pixHD Cityscapes 99.29% 96.86% 66.2%

Table 8. Comparison between our single-image predictability error
and two multi-image baselines, using in-distribution images and a
larger amound of out-of-distribution images (BDD).

we select N images, denoted as shadow train, for training
the shadow model. As an upper-bound, the shadow model
is given the exactly same architecture as used by the victim
model. Another N images, not seen by the shadow model,
are set to be shadow test. We define a new label for each
sample as follows:

label(x) =

{
0, if x← shadow train

1, if x← shadow test
(9)

The classifier C architecture and training procedure are sim-
ilar to [21]. For each image, we compute the structured
loss map between the ground-truth image and the generated
image, using L1 as the loss function. At every epoch we
randomly crop 15 patches of size 90 × 90 from the struc-
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Figure 10. Comparison of MIA accuracy when using our single
sample vs. using multi-sample predictability errors, as a function
of the number of training images. Note that the multi-image score
assumes knowledge of the victim’s model, as well as the availability
of many labeled training images

tured loss map. We train a ResNet-50 [20] from scratch
on the 90 × 90 patches, modified for binary classification.
We use a batch size of 8, SGD optimizer, weight decay of
1e− 2, initial learning rate of 0.1 which reduces by a factor
of 0.1 every 15 epochs. As previously mentioned, we do not
evaluate this on the Facades dataset, due to its size.



Model Dataset Ours In-Dist Out-of-Dist (BDD)
ROC ROC Acc. ROC Acc.

Pix2pix Maps2sat 85.65% 80.15% 73.4% - -
Pix2pix Cityscapes 83.23% 78.68% 67.5% 72.57% 56.16%

Pix2pixHD Maps2sat 99.42% 98.63% 93.7% - -
Pix2pixHD Cityscapes 99.09% 96.39% 64.0% 95.78% 56.5%

Table 9. Comparison between our MIA and the commonly used shadow-model-based classifier attack, using 4K train and 4K test images
from the BDD dataset. Our MIA outperforms while not requiring extra training images.

We compare the performance of our single-sample
method to the shadow model method in Tab. 9. For fair-
ness we compare both the ROCAUC over the classifier’s
confidence, as well as the classification accuracy. It can be
seen that in both cases, and for either in-distribution or out-
of-distribution auxiliary data, the shadow model approach
is inferior to our method for image translation models. We
discuss the case of semantic segmentation in Sec. 4.2.2.

8.9. Memorization

As mentioned in Sec. 5, memorization is the main reason
for the success of our method. Fig. 11 shows the accuracy
of our method as a function of the number of epochs used
for training the victim model, clearly suggesting that memo-
rization is indeed the vulnerability.
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Figure 11. Effect of memorization on the attack success rate.

8.10. Defenses

In Sec. 5, we discuss the Gauss defense, including other
common defenses, against our attack. We evaluated our
attack accuracy as a function of different noise STD. Fig. 12
shows that a considerable amount of noise, which corrupts
the generated output, is required in order to have a significant
effect over our attack success, which is still much better than
random guessing (50%). Results for Pix2PixHD, UperNet
and HRNetV2 are presented in Fig. 5.

8.11. ImageNet predictability error

Our predictability error relies on learning a mapping be-
tween feature vectors to their corresponding pixel values. We
use a pre-trained Wide-ResNet50×2 [50], which is trained
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Figure 12. Effect of Gauss defense on the attack success rate. Even
with large amounts of added noise, our attack still manages to
success much better then random guessing.

Figure 13. Examples of images from the ImageNet dataset that
received the lowest and highest predictability errors. First row -
lowest scored train images. Second row - lowest scored test images.
Third row - highest scored train images. Last row - highest scored
test images. As can be seen, the predictability error is effective
even on images that were used for training the feature extractor.

on the ImageNet dataset. We do not make any assumptions
regarding an overlap between the pre-trained model’s train-
ing data (i.e. ImageNet) and the data during in the attack. In
the scenario in which such an overlap exists, the concern is
that the predictability error would lose its credibility.

In order to verify this, we computed the predictability
error of a random subset of 1K train images and 1K test



images, from the ImageNet dataset. As no input-output pairs
exists, we trained the linear predictor to predict pixel values
from deep features of the same image. We do not observe any
significant difference between the two - both share similar
mean and std values: (0.0549, 0.018) for the train images
and (0.0556, 0.0191) for the test images. A ROCAUC score
of 51% further demonstrates that there is no clear difference
between the distribution of the predictability error on seen
and unseen images.

Fig. 13 further demonstrates this. The first row presents
the train images that received the lowest scores, i.e. marked
as easy images, and the second row presents the test images
with the lowest scores. Both correspond to ”plain” images,
regardless of whether they are known (train) or unknown
(test). The same applies to the Difficult images. The third
row presents the highest scored train images and the last
row presents the highest scored test images. Both contains
complex patterns and high variance. This demonstrates that
the predictability error is not affected by the having prior
knowledge of the image, and is only measuring the amount
of variance and complexity of an image.


