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In this supplementary material, we provide the details

of network architecture (Sec. 1.1), training details ((Sec.

1.3)), theoretical analysis (Sec. 2) additional ablation stud-

ies (Sec. 3) and more visual evaluations (Sec. 4) cross-

resolution setting. Please also refer to the supplementary

video for cross-resolution results on multiscale gigapixel

photography. We will release our training and testing codes.

1. Implementation Details

In this section, we introduce the implementation details

of the proposed LocalTrans, including network architecture

(deep siamese network and homography estimation mod-

ule), data preprocessing and training details.

1.1. Network Architecture

Table 1 shows the detail configuration of the deep

siamese network in scale-level k = 1. For the rest scale-

levels (k = 2 and k = 3), the output layers are Maxpool3

and Maxpool2, respectively. Table 2 shows the detail con-

figuration of the homography estimation module in scale-

level k. Note that the input of the average-pooling layer is

ReLU3_2 in scale-level 1, and ReLU4_3 in scale-level 2,

etc.

1.2. Data Preprocessing

We train our network using the MS-COCO 2014

dataset [5] and follow the same way with official setting

to split dataset into Train/Test/Val. For the data augmenta-

tion, we adopt the same processes of adding Gaussian noise

and randomly adjusting brightness, saturation and contrast,

as those in [1]. Gaussian noise is added with standard de-

viation 0.02 to both of the two input images. And we ran-

domly pick one image from the two input images to en-

hance brightness, saturation and contrast between 0.5 to 1.5

in a random order. These image operations are implemented

by Torchvision [7]. For the synthesized cross-resolution

setting, the low-resolution image is first downsampled and

Layer kernel stride channel Input

Conv1_1 3 1 3/32 I

BN1_1 - - 32 Conv1_1

ReLU1_1 - - - BN1_1

Conv1_2 3 1 32/32 ReLU1_1

BN1_2 - - 32 Conv1_2

ReLU1_2 - - - BN1_2

Maxpool1 2 2 - ReLU1_2

Conv2_1 3 1 32/64 Maxpool1

BN2_1 - - 64 Conv2_1

ReLU2_1 - - - BN2_1

Conv2_2 3 1 64/64 ReLU2_1

BN2_2 - - 64 Conv2_2

ReLU2_2 - - - BN2_2

Maxpool2 2 2 - ReLU2_2

Conv3_1 3 1 64/64 Maxpool2

BN3_1 - - 64 Conv3_1

ReLU3_1 - - - BN3_1

Conv3_2 3 1 64/64 ReLU3_1

BN3_2 - - 64 Conv3_2

ReLU3_2 - - - BN3_2

Maxpool3 2 2 - ReLU3_2

Conv4_1 3 1 64/128 Maxpool3

BN4_1 - - 128 Conv4_1

ReLU4_1 - - - BN4_1

Conv4_2 3 1 128/128 ReLU4_1

BN4_2 - - 128 Conv4_2

ReLU4_2 - - - BN4_2

Maxpool4 2 2 - ReLU4_2

Table 1. Detail configuration of the deep siamese network for fea-

ture extraction in scale-level k = 1, where Conv denotes the 2D

convolution layer, BN the batch normalization layer and Maxpool

the max-pooling layer.

then upsampled to the original size using bicubic interpola-

tion.

1.3. Training Details

We initialize the weights of both convolution and de-

convolution layers by drawing randomly from a Gaussian



Layer kernel stride channel Input

Conv1_1 3 1 81/128 I

BN1_1 - - 128 Conv1_1

ReLU1_1 - - - BN1_1

Conv1_2 3 1 128/128 ReLU1_1

BN1_2 - - 128 Conv1_2

ReLU1_2 - - - BN1_2

Maxpool1 2 2 - ReLU1_2

Conv2_1 3 1 128/256 Maxpool1

BN2_1 - - 256 Conv2_1

ReLU2_1 - - - BN2_1

Conv2_2 3 1 256/256 ReLU2_1

BN2_2 - - 256 Conv2_2

ReLU2_2 - - - BN2_2

Maxpool2 2 2 - ReLU2_2

Conv3_1 3 1 256/256 Maxpool2

BN3_1 - - 256 Conv3_1

ReLU3_1 - - - BN3_1

Conv3_2 3 1 256/256 ReLU3_1

BN3_2 - - 256 Conv3_2

ReLU3_2 - - - BN3_2

Maxpool3 2 2 - ReLU3_2

Conv4_1 3 1 256/256 Maxpool3

BN4_1 - - 256 Conv4_1

ReLU4_1 - - - BN4_1

Conv4_2 3 1 256/256 ReLU4_1

BN4_2 - - 256 Conv4_2

ReLU4_2 - - - BN4_2

Maxpool4 2 2 - ReLU4_2

Conv5_1 3 1 256/256 Maxpool4

BN5_1 - - 256 Conv5_1

ReLU5_1 - - - BN5_1

Conv5_2 3 1 256/256 ReLU5_1

BN5_2 - - 256 Conv5_2

ReLU5_2 - - - BN5_2

Avgpool - - - ReLU[k + 2]_2

Conv1D 1 1 256/8 Avgpool

Table 2. Detail configuration of the homography estimation mod-

ule in scale-level k, where Avgpool denotes the average-pooling,

Conv1D the 1D convolution layer.

distribution with a zero mean and a standard deviation of

1× 10
−3, and the biases by zero. The network is optimized

by using ADAM solver [3] with learning rate of 1 × 10
−4

(β1 = 0.9, β2 = 0.999) and mini-batch size of 50. The

network converges after 8 × 10
5 steps of backpropagation,

taking about 35 hours on a NVIDIA Quadro GV100. The

settings are the same for DHN[2], UDHN [9] and MHN [4],

except the mini-batch size for UDHN [9] is 15.

2. Theoretical analyses

In this section, we provide additional theoretical anal-

yses of LAK and the explicit formulation. First, the self-

attention and the cross-attention achieved by the proposed

LAK are able to highlight the feature, especially around the

Unaligned Image Target Image Implicit Formulation

(Feature)

Implicit Formulation Self-Attention Cross-Attention

Figure 1. Feature map visualization. We visualize feature map by

calculating the difference of one feature with its adjacent 4 fea-

tures.

Figure 2. Additional feature map visualization.
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Figure 3. Comparison of the implicit and explicit formulation. For

optical flow, red arrows are GT, green arrows are the derived sparse

flow.

object boundary, as shown in Fig. 1. This characteristic en-

sures the better performance of the proposed LAK. Second,

the explicit formulation is more interpretable. We can di-

rectly derive a sparse optical flow from the local attention

map, as shown in Fig. 3, while the implicit formulations in

[2, 4, 9] behave like a blackbox.

3. Additional Ablation Studies

In this section, we verify the effectiveness of the pro-

posed LocalTrans by performing the following ablation
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Figure 4. Comparison with the network without the self-attention

(w/o Self-Attention) and without the cross-attention (w/o Cross-

Attention).

studies.

Without self-attention. We implement this network by

simply feeding the features from the deep siamese network

into the Transformer Decoder Module (TDM). Since the

Self-Attention Encoder Module (SAEM) hardly influences

the depth or the receptive field of the network (it only con-

tains two convolutional layers with kernel size of 1×1), we

simply ignore the module. The result “w/o Self-Attention”

in Fig. 4 shows that the performance of the network de-

grades obviously without the self-attention.

Without cross-attention. We implement this network

by simply concatenating the features from the SEAM along

the channel dimension and feed them into the homogra-

phy estimation module. Similarly, this implementation will

hardly influence the depth or the receptive field of the net-

work. The result “w/o Cross-Attention” in Fig. 4 shows

that the network performance significantly degrades with-

out the cross-attention, which even worse than that without

the self-attention.

Two identical attention modules. We evaluate our

method using two SAEM only and two TDM only. The re-

sults are shown in Fig. 4. Two TDM perform slightly better

than two SAEM but they still can not surpass our method,

i.e., one SAEM and one TDM.

The above ablation studies validate that the self-attention

and cross-attention in the proposed LocalTrans are superior

than the concatenation of features from the input images.

4. Additional Results

4.1. Visual Evaluations on Synthesized Cross­
Resolution Data

We show additional results on the MS-COCO Dataset [5]

under cross-resolution settings (4× and 8×) in Fig. 5

and Fig. 6. We compare our LocalTrans with 4

baseline methods, a coventional feature-based method,

SIFT+RANSAC [6], three deep learning-based methods,

DHN [2], UDHN [9] and MHN [4]. The conventional

feature-based method, SIFT+RANSAC [6], fails to esti-

mate the homography matrices under high-resolution gaps.

The proposed method has lower error and is more robust to

large resolution gap compared with the deep learning-based

methods, DHN [2], UDHN [9] and MHN [4].

4.2. Visual Evaluations on Optical Zoom­in Cross­
Resolution Data

To ensure the color consistency among the high-

resolution target images in each gigapixel scene, we adopt

affine color mapping model introduced in [8] for color cor-

rection in the post-processing. Fig 7 shows additional re-

sults on the multiscale gigapixel dataset [8] under about

6× resolution gap (top three cases) and the cross-resolution

stereo dataset [10] under about 10× resolution gap (bot-

tom one case). The results demonstrate the superiority of

the proposed LocalTrans. Please also refer to the supple-

mentary video for cross-resolution results on multiscale gi-

gapixel photography.



Target Image Unaligned Image SIFT DHN UDHN MHN LocalTrans

Figure 5. Visual evaluation on synthesized 4× cross-resolution data. We convert the images to gray-scale, and mix the G channels of the

aligned image and the R channel of the high-resolution target image. Note that the input target image is low-resolution. The misaligned

pixels appear as red or green ghosts.

Target Image Unaligned Image SIFT DHN UDHN MHN LocalTrans

Figure 6. Visual evaluation on synthesized 8× cross-resolution data.
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Figure 7. Visual evaluation on the multiscale gigapixel dataset [8] (top three, 6×) and the cross-resolution stereo dataset [10] (bottom,

10×).
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